Войти
Образовательный портал. Образование
  • Манная каша на молоке: пропорции и рецепты приготовления Манная каша 1 порция
  • Суп-пюре из брокколи с сыром Рецепт крем супа из брокколи с сыром
  • Гороскоп: характеристика Девы, рождённой в год Петуха
  • Причины выброса токсичных веществ Несгораемые углеводороды и сажа
  • Современный этап развития человечества
  • Лилия яковлевна амарфий Могила лилии амарфий
  • Чем определяется собственная частота колебаний пружинного маятника. Пружинный маятник. Опыт с маятниками

    Чем определяется собственная частота колебаний пружинного маятника. Пружинный маятник. Опыт с маятниками

    ) маятники и др.

    Модель "Пружинный маятник"

    Модель демонстрирует свободные колебания груза на пружине. Можно изменять массу груза m , его начальное положение x 0 , коэффициент жесткости пружины k , коэффициент вязкого трения b . Выводятся графики зависимости координаты и скорости от времени, диаграммы потенциальной и кинетической энергий при свободных гармонических колебаниях груза на пружине, а также при затухающих колебаниях при наличии вязкого трения.

    Рассмотрим теоретически колебания пружинного маятника. Пружинный маятник представляет собой некоторый груз массой m, закрепленный на пружине с коэффициентом жесткости k, совершающий свободные гармонические колебания (рис.6.13).

    Рис. 6.13

    Гармонические колебания называютсвободными, если они совершаются только под действием сил, вызывающих эти колебания.

    Частоту свободных гармонических колебаний называют собственной частотой (w о ), т.к. она зависит только от свойств самой физической системы.

    Найдем дифференциальное уравнениесвободных гармонических колебаний пружинного маятника. На маятник (рис. 6 .13) действует сила тяжести

    G = mg,

    где , и сила упругости

    F упр = – кх,

    гдех - смещение; k - коэффициент жесткости (упругости) пружины (см. п.3.36. Закон Гука) .

    Эти силы в состоянии покоя равны по величине, но противоположны по направлению(третий закон Ньютона). Однако при колебаниях сила упругости изменяется периодическипо величине и по направлению. Значит силой,вызывающей колебания пружинного маятника, является сила упругости. При этом выполняется следующее соотношение:

    ma= – kx

    или

    Решением данного дифференциального уравнения является функция

    Используя (6.23) и (6.26), запишем, что

    Из (6.27) и(6.28), имеем

    - m w о 2 х = – кх.

    После несложных преобразований получим

    Напомним, что уравнение вида (6.30) является общим для всех физических систем различной природы,совершающих свободные гармонические колебания, только вместосмещения х используется величина, характеризующая колебания данной системы, например, колебание заряда (q), тока(I)и т.д.

    Сравнивая общее дифференциальное уравнение гармонических колебаний (6.30) и дифференциальное уравнение колебаний пружинного маятника (6.24), приходим к заключению, что квадрат круговой частоты прямо пропорционален коэффициенту жесткости пружины и обратно пропорционален его массе:

    (6.31)

    Найдем период колебаний пружинного маятника. Из кинематики вращательного движения м.т.известно, что период и угловая скорость (круговая частота) связаны соотношением

    Следовательно, период колебаний пружинного маятника

    (6.32)

    Вывод: период колебаний пружинного маятника прямо пропорционален квадратному корню массы маятника и обратно пропорционален квадратному корню коэффициента жесткости пружины.

    Замечание: Выводы, полученные при рассмотрении колебаний пружинного маятника, можно использовать в задачах, связанных с колебаниями атомов и молекул различных физических систем.

    Например, каждая молекула характеризуется приведенной массой

    ,

    где m 1 иm 2 - массы атомов, образующих молекулу.

    Из (6.31) найдем коэффициент упругости молекул.

    Например, длякристалла NaCl :

    m привед » 3,34 × 10 - 26 кг,

    собственная частота

    w о » 7,1510 13 с -1 .

    Тогда

    k = m привед w о 2 ,

    т.е. k » 120 Н/м 2 .

    Полученный результат характеризует упругость молекул NaCl .

    Работа большинства механизмов основана на простейших законах физики и математики. Довольно большое распространение получило понятие пружинного маятника. Подобный механизм получил весьма широкое распространение, так как пружина обеспечивает требуемую функциональность, может быть элементом автоматических устройств. Рассмотрим подробнее подобное устройство, принцип действия и многие другие моменты подробнее.

    Определения пружинного маятника

    Как ранее было отмечено, пружинный маятник получил весьма широкое распространение. Среди особенностей можно отметить следующее:

    1. Устройство представлено сочетанием груза и пружины, масса которой может не учитываться. В качестве груза может выступать самый различный объект. При этом на него может оказываться воздействие со стороны внешней силы. Распространенным примером можно назвать создание предохранительного клапана, который устанавливается в системе трубопровода. Крепление груза к пружине проводится самым различным образом. При этом используется исключительно классический винтовой вариант исполнения, который получил наиболее широкое распространение. Основные свойства во многом зависят от типа применяемого материала при изготовлении, диаметра витка, правильности центровки и многих других моментов. Крайние витки часто изготавливаются таким образом, чтобы могли воспринимать большую нагрузку при эксплуатации.
    2. До начала деформации полная механическая энергия отсутствует. При этом на тело не влияет сила упругости. Каждая пружина имеет исходное положение, которое она сохраняет на протяжении длительного периода. Однако, за счет определенной жесткости происходит фиксация тела в начальном положении. Имеет значение то, каким образом прикладывается усилие. Примером назовем то, что она должна быть направлена вдоль оси пружины, так как в противном случае есть вероятность появления деформации и многих других проблем. У каждой пружины есть свои определенный придел сжатия и растяжения. При этом максимальное сжатие представлено отсутствием зазора между отдельными витками, при растяжении есть момент, когда происходит невозвратная деформация изделия. При слишком сильном удлинении проволоки происходит изменение основных свойств, после чего изделие не возвращается в свое первоначальное положение.
    3. В рассматриваемом случае колебания совершаются за счет действия силы упругости. Она характеризуется довольно большим количество особенностей, которые должны учитываться. Воздействие упругости достигается за счет определенного расположения витков и типа применяемого материала при изготовлении. При этом сила упругости может действовать в обе стороны. Чаще всего происходит сжатие, но также может проводится растяжение – все зависит от особенностей конкретного случая.
    4. Скорость перемещения тела может варьировать в достаточно большом диапазоне, все зависит от того, какое оказывается воздействие. К примеру, пружинный маятник может перемещать подвешенный груз в горизонтальной и вертикальной плоскости. Действие направленного усилия во многом зависит от вертикальной или горизонтальной установки.

    В целом можно сказать, что пружинный маятник определение довольно обобщенное. При этом скорость перемещения объекта зависит от различных параметров, к примеру, величины приложенного усилия и других моментов. Перед непосредственным проведением расчетов проводится создание схемы:

    1. Указывается опора, к которой крепится пружина. Зачастую для ее отображения рисуется линия с обратной штриховкой.
    2. Схематически отображается пружина. Она часта представлена волнистой линией. При схематическом отображении не имеет значение длина и диаметральный показатель.
    3. Также изображается тело. Оно не должно соответствовать размерам, однако имеет значение место непосредственного крепления.

    Схема требуется для схематического отображения всех сил, которые оказывают влияние на устройство. Только в этом случае можно учесть все, что влияет на скорость перемещения, инерцию и многие другие моменты.

    Пружинные маятники применяются не только при расчетах ил решении различных задач, но также и на практике. Однако, не все свойства подобного механизма применимы.

    Примером можно назвать случай, когда колебательные движения не требуются:

    1. Создание запорных элементов.
    2. Пружинные механизмы, связанные с транспортировкой различных материалов и объектов.

    Проводимые расчеты пружинного маятника позволяют подобрать наиболее подходящий вес тела, а также тип пружины. Она характеризуется следующими особенностями:

    1. Диаметр витков. Он может быть самым различным. От показателя диаметра во многом зависит то, сколько требуется материала для производства. Диаметр витков также определяет то, какое усилие должно прикладываться для полного сжатия или частичного растяжения. Однако, увеличение размеров может создать существенные трудности с установкой изделия.
    2. Диаметр проволоки. Еще одним важным параметром можно назвать диаметральный размер проволоки. Он может варьировать в широком диапазоне, зависит прочность и степень упругости.
    3. Длина изделия. Этот показатель определяет то, какое усилие требуется для полного сжатия, а также какой упругостью может обладать изделие.
    4. Тип применяемого материала также определяет основные свойства. Чаще всего пружина изготавливается при применении специального сплава, который обладает соответствующие свойствами.

    При математических расчетах многие моменты не учитываются. Усилие упругости и многие другие показатели выявляются путем расчета.

    Виды пружинного маятника

    Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:

    1. Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
    2. Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.

    Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:

    1. Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
    2. Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.

    В результате этого возникает колебание, которое может длиться в течение длительного периода. Приведенная выше формула позволяет провести расчет с учетом всех моментов.

    Формулы периода и частоты колебаний пружинного маятника

    При проектировании и вычислении основных показателей также уделяется довольно много внимания частоте и периоду колебания. Косинус – периодическая функция, в которой применяется значение, неизменяемое через определенный промежуток времени. Именно этот показатель называют период колебаний пружинного маятника. Для обозначения этого показателя применяется буква Т, также часто используется понятие, характеризующее значение, обратное периоду колебания (v). В большинстве случаев при расчетах применяется формула T=1/v.

    Период колебаний вычисляется по несколько усложненной формуле. Она следующая: T=2п√m/k. Для определения частоты колебания используется формула: v=1/2п√k/m.

    Рассматриваемая циклическая частота колебаний пружинного маятника зависит от следующих моментов:

    1. Масса груза, который прикреплен к пружине. Этот показатель считается наиболее важным, так как оказывает влияние на самые различные параметры. От массы зависит сила инерции, скорость и многие другие показатели. Кроме этого, масса груза – величина, с измерением которой не возникает проблем из-за наличия специального измерительного оборудования.
    2. Коэффициент упругости. Для каждой пружины этот показатель существенно отличается. Коэффициент упругости указывается для определения основных параметров пружины. Зависит этот параметр от количества витков, длины изделия, расстояние между витками, их диаметра и многого другого. Определяется он самым различным образом, зачастую при применении специального оборудования.

    Не стоит забывать о том, что при сильном растяжении пружины закон Гука прекращает действовать. При этом период пружинного колебания начинает зависеть от амплитуды.

    Для измерения периода применяется всемирная единица времени, в большинстве случаев секунды. В большинстве случаев амплитуда колебаний вычисляется при решении самых различных задач. Для упрощения процесса проводится построение упрощенной схемы, на которой отображаются основные силы.

    Формулы амплитуды и начальной фазы пружинного маятника

    Определившись с особенностями проходимых процессов и зная уравнение колебаний пружинного маятника, а также начальные значения можно провести расчет амплитуды и начальной фазы пружинного маятника. Для определения начальной фазы применяется значение f, амплитуда обозначается символом A.

    Для определения амплитуды может использоваться формула: А=√x 2 +v 2 /w 2 . Начальная фаза высчитывается по формуле: tgf=-v/xw.

    Применяя эти формулы можно провести определение основных параметров, которые применяются при расчетах.

    Энергия колебаний пружинного маятника

    Рассматривая колебание груза на пружине нужно учитывать тот момент, что при движение маятника может описываться двумя точками, то есть оно носит прямолинейный характер. Этот момент определяет выполнение условий, касающихся рассматриваемой силы. Можно сказать, что полная энергия потенциальная.

    Провести расчет энергии колебаний пружинного маятника можно при учете всех особенностей. Основными моментами назовем следующее:

    1. Колебания могут проходить в горизонтальной и вертикальной плоскости.
    2. Ноль потенциальной энергии выбирается в качестве положения равновесия. Именно в этом месте устанавливается начало координат. Как правило, в этом положении пружина сохраняет свою форму при условии отсутствия деформирующей силы.
    3. В рассматриваемом случае рассчитываемая энергия пружинного маятника не учитывает силу трения. При вертикальном расположении груза сила трения несущественна, при горизонтальном тело находится на поверхности и при движении может возникнуть трение.
    4. Для расчета энергии колебания применяется следующая формула: E=-dF/dx.

    Приведенная выше информация указывают на то, что закон сохранения энергии выглядит следующим образом: mx 2 /2+mw 2 x 2 /2=const. Применяемая формула говорит о следующем:

    Провести определение энергии колебания пружинного маятника можно при решении самых различных задач.

    Свободные колебания пружинного маятника

    Рассматривая то, чем вызваны свободные колебания пружинного маятника следует уделить внимание действию внутренних сил. Они начинают формироваться практически сразу после того, как телу было передано движение. Особенности гармонических колебаний заключаются в нижеприведенных моментах:

    1. Могут также возникать и другие типы сил воздействующего характера, который удовлетворяют все нормы закона, называются квазиупругими.
    2. Основными причинами действия закона могут быть внутренние силы, которые формируются непосредственно на момент изменения положения тела в пространстве. При этом груз обладает определенной массой, усилие создается за счет фиксации одного конца за неподвижный объект с достаточной прочностью, второго за сам груз. При условии отсутствия трения тело может совершать колебательные движения. В этом случае закрепленный груз называется линейным.

    Не стоит забывать о том, что существует просто огромное количество различных видов систем, в которых осуществляется движение колебательного характера. В них также возникает упругая деформация, которая становится причиной применения для выполнения какой-либо работы.

    Цель работы . Ознакомиться с основными характеристиками незатухающих и затухающих свободных механических колебаний.

    Задача . Определить период собственных колебаний пружинного маятника; проверить линейность зависимости квадрата периода от массы; определить жесткость пружины; определить период затухающих колебаний и логарифмический декремент затухания пружинного маятника.

    Приборы и принадлежности . Штатив со шкалой, пружина, набор грузов различной массы, сосуд с водой, секундомер.

    1. Свободные колебания пружинного маятника. Общие сведения

    Колебаниями называются процессы, в которых периодически изменяется одна или несколько физических величин, описывающих эти процессы. Колебания могут быть описаны различными периодическими функциями времени. Простейшими колебаниями являются гармонические колебания – такие колебания, при которых колеблющаяся величина (например, смещение груза на пружине) изменяется со временем по закону косинуса или синуса. Колебания, возникающие после действия на систему внешней кратковременной силы, называются свободными.

    Если груз вывести из положения равновесия, отклонив на величину x , то сила упругости возрастает: F упр = – kx 2= – k (x 1 + x ). Дойдя до положения равновесия, груз будет обладать отличной от нуля скоростью и пройдет положение равновесия по инерции. По мере дальнейшего движения будет увеличиваться отклонение от положения равновесия, что приведет к возрастанию силы упругости, и процесс повторится в обратном направлении. Таким образом, колебательное движение системы обусловлено двумя причинами: 1) стремлением тела вернуться в положении равновесия и 2) инерцией, не позволяющей телу мгновенно остановиться в положении равновесия. В отсутствии сил трения колебания продолжались бы сколь угодно долго. Наличие силы трения приводит к тому, что часть энергии колебаний переходит во внутреннюю энергию и колебания постепенно затухают. Такие колебания называются затухающими.

    Незатухающие свободные колебания

    Сначала рассмотрим колебания пружинного маятника, на который не действуют силы трения – незатухающие свободные колебания. Согласно второму закону Ньютона c учетом знаков проекций на ось X

    Из условия равновесия смещение, вызываемое силой тяжести: . Подставляя в уравнение (1), получим: Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциальное уравнение

    https://pandia.ru/text/77/494/images/image008_28.gif" width="152" height="25 src=">. (3)

    Данное уравнение называется уравнением гармонических колебаний . Наибольшее отклонение груза от положения равновесия А 0 называется амплитудой колебаний . Величина , стоящая в аргументе косинуса, называется фазой колебания . Постоянная φ0 представляет собой значение фазы в начальный момент времени (t = 0) и называется начальной фазой колебаний . Величина

    есть круговая или циклическая частота собственных колебаний , связанная с периодом колебаний Т соотношением https://pandia.ru/text/77/494/images/image012_17.gif" width="125" height="55">. (5)

    Затухающие колебания

    Рассмотрим свободные колебания пружинного маятника при наличии силы трения (затухающие колебания). В простейшем и вместе с тем наиболее часто встречающемся случае сила трения пропорциональна скорости υ движения:

    F тр = – , (6)

    где r – постоянная, называемая коэффициентом сопротивления. Знак минус показывает, что сила трения и скорость имеют противоположные направления. Уравнение второго закона Ньютона в проекции на ось Х при наличии упругой силы и силы трения

    ma = – kx . (7)

    Данное дифференциальное уравнение с учетом υ = dx / dt можно записать

    https://pandia.ru/text/77/494/images/image014_12.gif" width="59" height="48 src="> – коэффициент затухания ; – циклическая частота свободных незатухающих колебаний данной колебательной системы, т. е. при отсутствии потерь энергии (β = 0). Уравнение (8) называют дифференциальным уравнением затухающих колебаний .

    Чтобы получить зависимость смещения x от времени t , необходимо решить дифференциальное уравнение (8)..gif" width="172" height="27">, (9)

    где А 0 и φ0 – начальная амплитуда и начальная фаза колебаний;
    – циклическая частота затухающих колебаний при ω >> https://pandia.ru/text/77/494/images/image019_12.gif" width="96" height="27 src=">. (10)

    На графике функции (9), рис. 2, пунктирными линиями показано изменение амплитуды (10) затухающих колебаний.

    Рис. 2. Зависимость смещения х груза от времени t при наличии силы трения

    Для количественной характеристики степени затухания колебаний вводят величину, равную отношению амплитуд, отличающихся на период, и называемую декрементом затухания :

    . (11)

    Часто используют натуральный логарифм этой величины. Такой параметр называется логарифмическим декрементом затухания :

    Амплитуда уменьшается в n раз, то из уравнения (10) следует, что

    Отсюда для логарифмического декремента получаем выражение

    Если за время t " амплитуда уменьшается в е раз (е = 2,71 – основание натурального логарифма), то система успеет совершить число колебаний

    Рис. 3. Схема установки

    Установка состоит из штатива 1 с измерительной шкалой 2 . К штативу на пружине 3 подвешиваются грузы 4 различной массы. При изучении затухающих колебаний в задании 2 для усиления затухания используется кольцо 5 , которое помещается в прозрачный сосуд 6 с водой.

    В задании 1 (выполняется без сосуда с водой и кольца) в первом приближении затуханием колебаний можно пренебречь и считать гармоническими. Как следует из формулы (5) для гармонических колебаний зависимость T 2 = f (m ) – линейная, из которой можно определить коэффициент жесткости пружины k по формуле

    где – угловой коэффициент наклона прямой T 2 от m .

    Задание 1. Определение зависимости периода собственных колебаний пружинного маятника от массы груза.

    1. Определить период колебаний пружинного маятника при различных значениях массы груза m . Для этого с помощью секундомера для каждого значения m трижды измерить время t полных n колебаний (n ≥10) и по среднему значению времени https://pandia.ru/text/77/494/images/image030_6.gif" width="57 height=28" height="28">. Результаты занести в табл. 1.

    2. По результатам измерений построить график зависимости квадрата периода T 2 от массы m . Из углового коэффициента графика определить жесткость пружины k по формуле (16).

    Таблица 1

    Результаты измерений для определения периода собственных колебаний

    3. Дополнительное задание. Оценить случайную , полную и относительную εt ошибки измерения времени для значения массы m = 400 г.

    Задание 2. Определение логарифмического декремента затухания пружинного маятника.

    1. На пружину подвесить груз массой m = 400 г с кольцом и поместить в сосуд с водой, так чтобы кольцо полностью находилось в воде. Определить период затухающих колебаний для данного значения m по методу, изложенному в п. 1 задания 1. Измерения повторить три раза и результаты занести в левую часть табл. 2.

    2. Вывести маятник из положения равновесия и, отметив по линейке его начальную амплитуду, измерить время t " , в течение которого амплитуда колебаний уменьшается в 2 раза. Измерения произвести три раза. Результаты занести в правую часть табл. 2.

    Таблица 2

    Результаты измерений

    для определения логарифмического декремента затухания

    Измерение периода колебаний

    Измерение времени

    уменьшения амплитуды в 2 раза

    4. Контрольные вопросы и задания

    1. Какие колебания называются гармоническими? Дайте определение их основных характеристик.

    2. Какие колебания называются затухающими? Дайте определение их основных характеристик.

    3. Поясните физический смысл логарифмического декремента затухания и коэффициента затухания.

    4. Вывести зависимости от времени скорости и ускорения груза на пружине, совершающего гармонические колебания. Привести графики и проанализировать.

    5. Вывести зависимости от времени кинетической, потенциальной и полной энергии для груза, колеблющегося на пружине. Привести графики и проанализировать.

    6. Получить дифференциальное уравнение свободных колебаний и его решение.

    7. Построить графики гармонических колебаний с начальными фазами π/2 и π/3.

    8. В каких пределах может изменяться логарифмический декремент затухания?

    9. Привести дифференциальное уравнение затухающих колебаний пружинного маятника и его решение.

    10. По какому закону изменяется амплитуда затухающих колебаний? Являются ли затухающие колебания периодическими?

    11. Какое движение называется апериодическим? При каких условиях оно наблюдается?

    12. Что называется собственной частотой колебаний? Как она зависит от массы колеблющегося тела для пружинного маятника?

    13. Почему частота затухающих колебаний меньше частоты собственных колебаний системы?

    14. Подвешенный к пружине медный шарик совершает вертикальные колебания. Как изменится период колебаний, если к пружине подвесить вместо медного шарика алюминиевый того же радиуса?

    15. При каком значении логарифмического декремента затухания колебания затухают быстрее: при θ1 = 0,25 или θ2 = 0,5? Привести графики этих затухающих колебаний.

    Библиографический список

    1. И . Курс физики / . – 11-е изд. – М. : Академия, 2006. – 560 с.

    2. В . Курс общей физики: в 3 т. / . – СПб. : Лань, 2008. – Т. 1. – 432 с.

    3. С . Лабораторный практикум по физике / .
    – М. : Высш. шк., 1980. – 359 с.

    Пружинный маятник - это колебательная система, состоящая из материальной точки массой т и пружины. Рассмотрим горизонтальный пружинный маятник (рис. 1, а). Он представляет собой массивное тело, просверленное посередине и надетое на горизонтальный стержень, вдоль которого оно может скользить без трения (идеальная колебательная система). Стержень закреплен между двумя вертикальными опорами.

    К телу одним концом прикреплена невесомая пружина. Другой ее конец закреплен на опоре, которая в простейшем случае находится в покое относительно инерциальной системы отсчета, в которой происходят колебания маятника. В начале пружина не деформирована, и тело находится в положении равновесия С. Если, растянув или сжав пружину, вывести тело из положения равновесия, то со стороны деформированной пружины на него начнет действовать сила упругости, всегда направленная к положению равновесия.

    Пусть мы сжали пружину, переместив тело в положение А, и отпустили . Под действием силы упругости оно станет двигаться ускоренно. При этом в положении А на тело действует максимальная сила упругости, так как здесь абсолютное удлинение x m пружины наибольшее. Следовательно, в этом положении ускорение максимальное. При движении тела к положению равновесия абсолютное удлинение пружины уменьшается, а следовательно, уменьшается ускорение, сообщаемое силой упругости. Но так как ускорение при данном движении сонаправлено со скоростью, то скорость маятника увеличивается и в положении равновесия она будет максимальна.

    Достигнув положения равновесия С, тело не остановится (хотя в этом положении пружина не деформирована, и сила упругости равна нулю), а обладая скоростью, будет по инерции двигаться дальше, растягивая пружину. Возникающая при этом сила упругости направлена теперь против движения тела и тормозит его. В точке D скорость тела окажется равной нулю, а ускорение максимально, тело на мгновение остановится, после чего под действием силы упругости начнет двигаться в обратную сторону, к положению равновесия. Вновь пройдя его по инерции, тело, сжимая пружину и замедляя движение, дойдет до точки А (так как трение отсутствует), т.е. совершит полное колебание. После этого движение тела будет повторяться в описанной последовательности. Итак, причинами свободных колебаний пружинного маятника являются действие силы упругости, возникающей при деформации пружины, и инертность тела.

    По закону Гука F x = -kx. По второму закону Ньютона F x = ma x . Следовательно, ma x = -kx. Отсюда

    Динамическое уравнение движения пружинного маятника.

    Видим, что ускорение прямопропорционально смешению и противоположно ему направлено. Сравнивая полученное уравнение с уравнением гармонических колебаний , видим, что пружинный маятник совершает гармонические колебания с циклической частотой

    В технике и окружающем нас мире часто приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными . Колебаниями называют изменения физической величины, происходящие по определенному закону во времени. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

    Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или математический маятник. Для существования в системе гармонических колебаний необходимо, чтобы у нее было положение устойчивого равновесия, то есть такое положение, при выведении из которого на систему начала бы действовать возвращающая сила.

    Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными . Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными .

    Простейшим видом колебательного процесса являются колебания, происходящие по закону синуса или косинуса, называемые гармоническими колебаниями . Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω 0 задаётся следующим образом:

    Решение предыдущего уравнения является уравнением движения для гармонических колебаний , которое имеет вид:

    где: x – смещение тела от положение равновесия, A – амплитуда колебаний, то есть максимальное смещение от положения равновесия, ω – циклическая или круговая частота колебаний (ω = 2Π /T ), t – время. Величина, стоящая под знаком косинуса: φ = ωt + φ 0 , называется фазой гармонического процесса. Смысл фазы колебаний: стадия, в которой колебание находится в данный момент времени. При t = 0 получаем, что φ = φ 0 , поэтому φ 0 называют начальной фазой (то есть той стадией, из которой начиналось колебание).

    Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T . Если же количество колебаний N , а их время t , то период находится как:

    Физическая величина, обратная периоду колебаний, называется частотой колебаний :

    Частота колебаний ν показывает, сколько колебаний совершается за 1 с. Единица частоты – Герц (Гц). Частота колебаний связана с циклической частотой ω и периодом колебаний T соотношениями:

    Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

    Максимальное значение скорости при гармонических механических колебаниях:

    Максимальные по модулю значения скорости υ m = ωA достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0). Аналогичным образом определяется ускорение a = a x тела при гармонических колебаниях. Зависимость ускорения от времени при гармонических механических колебаниях:

    Максимальное значение ускорения при механических гармонических колебаниях:

    Знак минус в предыдущем выражении означает, что ускорение a (t ) всегда имеет знак, противоположный знаку смещения x (t ), и, следовательно, возвращает тело в начальное положение (x = 0), т.е. заставляет тело совершать гармонические колебания.

    Следует обратить внимание на то, что:

    • физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 или период T .
    • Такие параметры процесса колебаний, как амплитуда A = x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени, т.е. начальными условиями.
    • При колебательном движении тело за время, равное периоду, проходит путь, равный 4 амплитудам. При этом тело возвращается в исходную точку, то есть перемещение тела будет равно нулю. Следовательно, путь равный амплитуде тело пройдет за время равное четверти периода.

    Чтобы определить, когда в уравнение колебаний подставлять синус, а когда косинус, нужно обратить внимание на следующие факторы:

    • Проще всего, если в условии задачи колебания названы синусоидальными или косинусоидальными.
    • Если сказано, что тело толкнули из положения равновесия – берем синус с начальной фазой, равной нулю.
    • Если сказано, что тело отклонили и отпустили – косинус с начальной фазой, равной нулю.
    • Если тело толкнули из отклоненного от положения равновесия состояния, то начальная фаза не равна нолю, а брать можно и синус и косинус.

    Математический маятник

    Математическим маятником называют тело небольших размеров, подвешенное на тонкой, длинной и нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. Только в случае малых колебаний математический маятник является гармоническим осциллятором , то есть системой, способной совершать гармонические (по закону sin или cos) колебания. Практически такое приближение справедливо для углов порядка 5–10°. Колебания маятника при больших амплитудах не являются гармоническими.

    Циклическая частота колебаний математического маятника рассчитывается по формуле:

    Период колебаний математического маятника:

    Полученная формула называется формулой Гюйгенса и выполняется, когда точка подвеса маятника неподвижна . Важно запомнить, что период малых колебаний математического маятника не зависит от амплитуды колебаний. Такое свойство маятника называется изохронностью . Как и для любой другой системы, совершающей механические гармонические колебания, для математического маятника выполняются следующие соотношения:

    1. Путь от положения равновесия до крайней точки (или обратно) проходится за четверть периода.
    2. Путь от крайней точки до половины амплитуды (или обратно) проходится за одну шестую периода.
    3. Путь от положения равновесия до половины амплитуды (или обратно) проходится за одну двенадцатую долю периода.

    Пружинный маятник

    Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению. Таким свойством обладает сила упругости.

    Таким образом, груз некоторой массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно, составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют пружинным маятником .

    Циклическая частота колебаний пружинного маятника рассчитывается по формуле:

    Период колебаний пружинного маятника:

    При малых амплитудах период колебаний пружинного маятника не зависит от амплитуды (как и у математического маятника). При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x 0 , равную:

    А колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω 0 и периода колебаний T справедливы и в этом случае. Таким образом, полученная формула для периода колебаний груза на пружине остается справедливой во всех случаях, независимо от направления колебаний, движения опоры, действия внешних постоянных сил.

    При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а, следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия – это энергия упругой деформации пружины. Для математического маятника – это энергия в поле тяготения Земли.

    Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией (как правило, потенциальную энергию в положении равновесия полагают равной нулю). Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и так далее.

    Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот. Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной. При этом, максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

    Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

    Взаимосвязь энергетических характеристик механического колебательного процесса (полная механическая энергия равна максимальным значениям кинетической и потенциальной энергий, а также сумме кинетической и потенциальной энергий в произвольный момент времени):

    Механические волны

    Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной .

    Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной . Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной .

    Как в поперечных, так и в продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

    Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют немеханические волны, которые способны распространяться и в пустоте (например, световые, т.е. электромагнитные волны могут распространяться в вакууме).

    • Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.
    • Поперечные волны не могут существовать в жидкой или газообразной средах.

    Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой ν и длиной волны λ . Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ .

    Длиной волны λ называют расстояние между двумя соседними точками, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ , волна пробегает за время равное периоду T , следовательно, длина волны может быть рассчитана по формуле:

    где: υ – скорость распространения волны. При переходе волны из одной среды в другую длина волны и скорость ее распространения меняются. Неизменными остаются только частота и период волны.

    Разность фаз колебаний двух точек волны, расстояние между которыми l рассчитывается по формуле:

    Электрический контур

    В электрических цепях, так же, как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный LC-контур . В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими. Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

    Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

    Циклическая частота колебаний в электрическом колебательном контуре:

    Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

    Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

    Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

    Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

    Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

    Все реальные контура содержат электрическое сопротивление R . Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в теплоту, выделяющуюся на резисторе, и колебания становятся затухающими.

    Переменный ток. Трансформатор

    Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими синусоидальное напряжение. Они позволяют наиболее просто и экономно осуществлять передачу, распределение и использование электрической энергии.

    Устройство, предназначенное для превращения механической энергии в энергию переменного тока, называется генератором переменного тока . Он характеризуется переменным напряжением U (t ) (индуцированной ЭДС) на его клеммах. В основу работы генератора переменного тока положено явление электромагнитной индукции.

    Переменным током называется электрический ток, который изменяется с течением времени по гармоническому закону. Величины U 0 , I 0 = U 0 /R называются амплитудными значениями напряжения и силы тока. Значения напряжения U (t ) и силы тока I (t ), зависящие от времени, называют мгновенными .

    Переменный ток характеризуется действующими значениями силы тока и напряжения. Действующим (эффективным) значением переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделил бы в единицу времени такое же количество теплоты, что и данный переменный ток. Для переменного тока действующее значение силы тока может быть рассчитано по формуле:

    Аналогично можно ввести действующее (эффективное) значение и для напряжения , рассчитываемое по формуле:

    Таким образом, выражения для мощности постоянного тока остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

    Обратите внимание, что если идет речь о напряжении или силе переменного тока, то (если не сказано иного) имеется в виду именно действующее значение. Так, 220В – это действующее напряжение в домашней электросети.

    Конденсатор в цепи переменного тока

    Строго говоря, конденсатор ток не проводит (в том смысле, что носители заряда через него не протекают). Поэтому, если конденсатор подключен в цепь постоянного тока, то сила тока в любой момент времени в любой точке цепи равна нулю. При подключении в цепь переменного тока из-за постоянного изменения ЭДС конденсатор перезаряжается. Ток через него по-прежнему не течет, но ток в цепи существует. Поэтому условно говорят, что конденсатор проводит переменный ток. В этом случае вводится понятие сопротивления конденсатора в цепи переменного тока (или емкостного сопротивления

    Обратите внимание, что емкостное сопротивление зависит от частоты переменного тока. Оно в корне отличается от привычного нам сопротивления R. Так, на сопротивлении R выделяется теплота (поэтому его часто называют активным), а на емкостном сопротивлении теплота не выделяется. Активное сопротивление связано со взаимодействием носителей заряда при протекании тока, а емкостное – с процессами перезарядки конденсатора.

    Катушка индуктивности в цепи переменного тока

    При протекании переменного тока в катушке возникает явление самоиндукции, и, следовательно, ЭДС. Из-за этого напряжение и сила тока в катушке не совпадают по фазе (когда сила тока равна нулю, напряжение имеет максимальное значение и наоборот). Из-за такого несовпадения средняя тепловая мощность, выделяющаяся в катушке, равна нулю. В этом случае вводится понятие сопротивления катушки в цепи переменного тока (или индуктивного сопротивления ). Это сопротивление определяется выражением:

    Обратите внимание, что индуктивное сопротивление зависит от частоты переменного тока. Как и емкостное сопротивление, оно отличается от сопротивления R. Как и на емкостном сопротивлении, на индуктивном сопротивлении теплота не выделяется. Индуктивное сопротивление связано с явлением самоиндукции в катушке.

    Трансформаторы

    Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы . Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы, на который намотаны две обмотки: первичная и вторичная . Первичная обмотка подсоединяется к источнику переменного тока с некоторым напряжением U 1 , а вторичная обмотка подключается к нагрузке, на которой появляется напряжение U 2 . При этом, если число витков в первичной обмотке равно n 1 , а во вторичной n 2 , то выполняется следующее соотношение:

    Коэффициент трансформации вычисляется по формуле:

    Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

    В неидеальном трансформаторе вводится понятие КПД:

    Электромагнитные волны

    Электромагнитные волны – это распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы электрической напряженности и магнитной индукции перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Электромагнитные волны распространяются в веществе с конечной скоростью, которая может быть рассчитана по формуле:

    где: ε и μ – диэлектрическая и магнитная проницаемости вещества, ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8,85419·10 –12 Ф/м, μ 0 = 1,25664·10 –6 Гн/м. Скорость электромагнитных волн в вакууме (где ε = μ = 1) постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

    Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных. Если электромагнитная волна распространяется в какой-либо среде, то скорость ее распространения также выражается следующим соотношением:

    где: n – показатель преломления вещества – физическая величина, показывающая во сколько раз скорость света в среде меньше чем в вакууме. Показатель преломления, как видно из предыдущих формул, может быть рассчитан следующим образом:

    • Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии.
    • Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. А вот цепи, в которых протекает переменный ток, т.е. такие цепи в которых носители заряда постоянно меняют направление своего движения, т.е. двигаются с ускорением – являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.