Войти
Образовательный портал. Образование
  • Манная каша на молоке: пропорции и рецепты приготовления Манная каша 1 порция
  • Суп-пюре из брокколи с сыром Рецепт крем супа из брокколи с сыром
  • Гороскоп: характеристика Девы, рождённой в год Петуха
  • Причины выброса токсичных веществ Несгораемые углеводороды и сажа
  • Современный этап развития человечества
  • Лилия яковлевна амарфий Могила лилии амарфий
  • Какие светодиоды поставить в ближний свет. Светодиодная лента – как установить своими руками? Если на вашей марке в максимальной комплектации есть LED

    Какие светодиоды поставить в ближний свет. Светодиодная лента – как установить своими руками? Если на вашей марке в максимальной комплектации есть
LED

    Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

    Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

    Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
    Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

      * Низкое электропотребления – в 10 раз экономичней лампочек
      * Долгий срок службы – до 11 лет непрерывной работы
      * Высокий ресурс прочности – не боятся вибраций и ударов
      * Большое разнообразие цветов
      * Способность работать при низких напряжениях
      * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

    Маркировка светодиодов

    Рис. 1. Конструкция индикаторных 5 мм светодиодов

    В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
    Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

    Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние - в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
    Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

    Рис. 2. Виды корпусов светодиодов

    Цвета светодиодов

    Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
    Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

    Таблица 1. Маркировка светодиодов

    Многоцветные светодиоды

    Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

    Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

    При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

    Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

    Напряжение питания

    Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

    Напряжение питания - параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
    Напряжение, указанное на упаковке светодиодов - это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
    Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

    Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

    Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

    R
    Uпит — напряжение источника питания в вольтах.
    Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
    I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
    0,75 — коэффициент надёжности для светодиода.

    Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

    P — мощность резистора в ваттах.
    Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
    Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
    R — сопротивление резистора в омах.

    Расчет токогораничивающего резистора и его мощности для одного светодиода

    Типичные характеристики светодиодов

    Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

    Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
    Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

    Таблица падения напряжений светодиодов в зависимости от цвета

    По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

    Последовательное и параллельное включение светодиодов

    При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

    При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

    Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

      * Nmax – максимально допустимое количество светодиодов в гирлянде
      * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
      * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
      * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

    При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

    Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

    Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

    Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

    Параллельное включение светодиодов с общим резистором - плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

    Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

    Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

    А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

    Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

    Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

    Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

    Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
    Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

    Как запитать светодиод от сети 220 В.

    Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
    Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

    Еще один вариант подключения светодиода к электросети 220в:

    Или же поставить два светодиода встречно-параллельно.

    Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
    Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
    Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

    Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

    Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
    А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

    Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

    На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
    Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

    Наиболее распространённые ошибки при подключении светодиодов

    1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

    2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

    3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться - в зависимости от настройки тока ограничивающим резистором.

    4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

    5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

    6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

    Мигающие светодиоды

    Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
    Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

    Отличительные качества мигающих сеетодиодое:

      Малые размеры
      Компактное устройство световой сигнализации
      Широкий диапазон питающего напряжения (вплоть до 14 вольт)
      Различный цвет излучения.

    В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
    Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

    Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

    Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
    Чип генератора размещён на основании анодного вывода.
    Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

    Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
    Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
    Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
    Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

    Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

    Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
    Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

    Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

    Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

    Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
    Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

    В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
    светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
    Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

    Выдержка из документа:

    «Объективная сторона состава соответствующего административного правонарушения может иметь место только в случае одновременного несоответствия цвета огней и режима работы таких приборов требованиям, указанным изготовителем в эксплуатационной документации, а в случаях установления дополнительных световых приборов».

    «Вместе с тем в случае несоответствия только цвета или режима работы световых приборов, установленных на транспортном средстве, названным выше требованиям управление таким транспортным средством может быть квалифицировано по части 1 статьи 12.5 КоАП РФ».

    Вы заметили, как в нашу жизнь плавно и незаметно вошли светодиоды? Они по всюду. Они везде. Но еще несколько лет назад светодиодная оптика казалась фантастикой. Особенно в автопромышленности. Правда теперь, с каждым годом все больше автопроизводителей вместо штатной галогенной или ксеноновой оптики устанавливают на свои автомобили светодиодные фары. Это стало возможным благодаря тому, что себестоимость светодиодных ламп существенно упала.

    В итоге, в мир пришла повсеместная мода на светодиоды и сразу в авто мире появился спрос на светодиодную оптику. Но не все могут себе позволить купить новый автомобиль со светодиодными фарами. Поэтому многие компании поняли, что пришла пора производить светодиодные лампы для ближнего и дальнего света, которые могут заменить обычные галогеновые и ксеноновые лампочки в фарах. Естественно многие автолюбители решили приобрести себе подобные лампы, установив их на свою машину. Но законно ли это? И существует ли ответственность за установку не заводской светодиодной оптики? Давайте разбираться.

    Технологии 21 века все больше захватывают наш мир. Каждый год появляется все больше невероятных инновационных идей, а также вчерашние фантастические технологии сегодня становятся реальностью. Не обошел прогресс цифрового века и автопромышленность. Особенно световые приборы автомобилей, которые за последние десятилетия претерпели существенные изменения.

    Причем прогресс в авто светотехнике за последние несколько лет стал более существенным чем за последние 50 лет. В итоге мы увидели, как в автопромышленности сначала появилась ксеноновая оптика. Затем, светодиодная. Теперь - лазерное световое освещение.

    Но сегодня речь не об этом. Как мы уже сказали, что во всем мире (в том числе и в нашей стране) в настоящий момент наблюдается сверх популярность светодиодных ламп, которые устанавливаются в автомобильные фары.

    В последние годы все больше водителей начинают задумываться, о замене галогенных и ксеноновых фар на светодиодные. Насколько это эффективно и т.п. вы можете узнать из нашей обзорной статьи .

    Но есть один главный вопрос, который волнует многих. Можно ли устанавливать в обычные фары, предназначенные для галогенных или ксеноновых ламп, новомодные светодиодные лампы? Существует ли ответственность в России за установку светодиодных ламп в переднюю оптику?

    К сожалению многие автовладельцы думают, что ответственности не существует. Ведь это же не ксеноновые лампы, которые запрещено устанавливать в галогенные фары. Но это не так. Ответственность на самом деле существует и очень строгая. Например, за незаконную установку светодиодных ламп ближнего или дальнего света в переднюю оптику, водитель может лишиться водительских прав. Удивлены? Вот подробности.

    Почему многие водители считают, что за установку светодиодных ламп нет ответственности?

    Действительно в нашей стране сложился интересный парадокс. Например, большинство водителей знают, что за установку в галогенные фары ксеноновых ламп в России предусмотрена ответственность, в виде лишения водительских прав. Именно поэтому, мы больше не видим массу автомобилей на дороге с "колхозным" ксеноном. Ведь согласитесь, очень суровая.

    Но почему же тогда с каждым годом на дорогах России появляется все больше машин со светодиодными лампами, которые как правило устанавливаются владельцами транспортных средств самостоятельно?

    Дело в том, что очень большое количество автолюбителей считают, что светодиодные лампы можно устанавливать в переднюю оптику. Особенно если учитывать, что многие продавцы светодиодных ламп ближнего и дальнего света предоставляют большое количество различных сертификатов и разрешений, заверяя покупателей, что LED лампы в галогенную или ксеноновую оптику доступные в продаже, действительно разрешены в нашей стране для применения и продажи.

    Но на деле выясняется, что большинство сертификатов на подобные лампы на момент продажи либо уже не действуют, либо приостановлены.

    Так же не стоит забывать и том, если продажа LED ламп разрешена и имеются действующие разрешения и сертификаты, то это не означает, что каждый автовладелец имеет право устанавливать их в передние фары своей машины.

    Поэтому наличие сертификации светодиодных ламп на территории России не означает, что вы имеете право установить их в свою машину. Да, купить вы можете. Но не более того, если ваши передние фары строго предназначены для работы только с ксеноновыми или галогенными лампами.

    То есть, ситуация точно такая же, как и с ксеноновыми лампами, установка которых категорически запрещена в автомобили, оснащенные передней оптикой предназначенной для галогенных ламп накаливания.

    Соответственно, установив в свои галогенные или ксеноновые фары LED ламы ближнего и дальнего света, вы грубо нарушите действующее Российское законодательство, а именно:

    статью 12.5 части 3 КоАП РФ:

    3. Управление транспортным средством, на передней части которого установлены световые приборы с огнями красного цвета или световозвращающие приспособления красного цвета, а равно световые приборы, цвет огней и режим работы которых не соответствуют требованиям Основных положений по допуску транспортных средств к эксплуатации и обязанностей должностных лиц по обеспечению безопасности дорожного движения, -

    влечет лишение права управления транспортными средствами на срок от шести месяцев до одного года с конфискацией указанных приборов и приспособлений.

    Какая ответственность за установку в галогенные или ксеноновые передние фары LED ламп?


    Установка в передние галогенные или ксеноновые фары светодиодных источников ближнего или дальнего света приравнено к оснащению автомобиля красными спецсигналами. Соответственно согласно действующим ПДД и КоАП РФ, в случае если водитель незаконно самовольно установит светодиодные лампы в фары, предназначенные для галогенных или ксеноновых ламп, то ему грозит ответственность в виде лишения водительского удостоверения сроком до 1 года.

    Согласитесь, что это очень строгая мера. Также не забывайте о том, что незнание законов не освобождает вас от ответственности. Поэтому ни в коем случае не устанавливайте на машину светодиодные лампы в фары, которые не предназначены для этого согласно заводской спецификации.

    Кто-то может подумать, что в вышеуказанной ссылке на статью 12.5 ч.3 нет прямого запрета на установку светодиодных ламп в галогенные или ксеноновые фары. Но это не так.

    Статья 12.5 ч.3 КоАП РФ отсылает нас к положению об основных требованиях по допуску транспортных средств к эксплуатации и обязанностей должностных лиц по обеспечению безопасности дорожного движения, за нарушения которых водитель может быть привлечен к административной ответственности.

    Так в частности, согласно пункта 3 положения об основных требованиях по допуску транспортных средств к эксплуатации и обязанностей должностных лиц по обеспечению безопасности дорожного движения, техническое состояние и оборудование, участвующих в дорожном движении транспортных средств, в части, относящееся к безопасности дорожного движения и охране окружающей среды, должно отвечать требованиям соответствующих стандартов, правил и руководств по их технической эксплуатации.

    Соответственно, если автомобиль не отвечает соответствующим стандартам, его эксплуатация по дорогам общего пользования запрещена.

    Какая ответственность грозит за установку светодиодных фар на автомобиль в комплектации с галогенными или ксеноновыми фарами?


    В принципе, никакая. Да, конечно ответственность также есть и за это. Но доказать вашу вину очень тяжело.

    Формально, если вы вместо галогенных фар установите на машину светодиодную оптику от более дорогой комплектации вашей модели, то максимум, что вам грозит, это штраф в 500 рублей.

    Но согласно закона даже, если вы вместо ксеноновых или галогенных фар установите на свою машину LED оптику от вашей же модели, но с более богатой комплектации, то все равно обязаны оформить внесение изменений в конструкцию своего автомобиля. Правда то, что привлечь вас к ответственности за это будет невозможно и маловероятным. Ведь сотрудник ГИБДД сверит маркировку фар и удостоверится, что лампы освещения, установленные в них соответствуют типу использования оптики. А то, что вы используете фары от другой версии автомобиля сотрудник ГИБДД вряд ли узнает.

    Сейчас многие автомобилисты чтобы улучшить головной свет своего железного коня, начали покупать специальные светодиодные лампы. Нет, это не те «LED» которые продавались лет 5 назад (и практически не светили), сейчас все по-другому. Свет от них яркий и четкий (я имею в виду есть четкая свето-теневая граница), они чем то похожи на КСЕНОН (из-за яркости), поэтому многие сотрудники ГИБДД к ним «неровно дышат» и норовят их приравнять к газоразрядным лампам. НО это не совсем так! Поэтому справедливо может возникнуть вопрос, а действительно – можно ли сейчас ставить современные диодные лампы в фары по закону? Или за это полагается штраф? Давайте разбираться, как обычно будет видео версия в конце …


    Начну с того что если посидеть и разобраться в законе – РЕАЛЬНО СТАНОВИТСЯ ВСЕ ПОНЯТНО – СТАВИТЬ НЕЛЬЗЯ , но с другой стороны, просто так проверить рядовые сотрудники ГИБДД эти лампы не могут, поэтому есть небольшая лазейка в законе. Но давайте по порядку.

    Три развития событий установки светодиодов

    Как светодиодные лампы могут попасть к вам в фары? Есть всего три причины:

    • Если их установили на заводе. ТО есть ваш производитель, штатно оснащает ваш автомобиль такими лампами – они легальны и никакой штраф вам не грозит
    • Установка таких фар, если на такой модели автомобиля производитель в максимальных комплектациях устанавливает LED

    • Установка в обычные фары, рассчитанные на галоген и производитель не предусматривает установку светодиодов.

    Для нас самый интересный случай это конечно же пункт «три», однако рассмотрим и пункт «два», такие случаи сейчас также встречаются.

    Что говорит нам закон?

    Будем разбирать самый распространенный случай — это когда у вас есть обычный автомобиль, его фары и отражатели предназначены для работы с галогеном, вы покупаете светодиодные лампы, которые подходят под ваш цоколь и устанавливаете их себе в авто.

    Закон здесь уже предусматривает нарушение согласно пункту 3.1 (перечня неисправностей и условий, при которых запрещается эксплуатация транспортных средств)

    3.1. Количество, тип, цвет, расположение и режим работы внешних световых приборов не соответствуют требованиям конструкции транспортного средства.

    Примечание. На транспортных средствах, снятых с производства, допускается установка внешних световых приборов от транспортных средств других марок и моделей.

    И скорее всего инспектор вам постарается вменить, часть 3 статьи 12.5 КоАП, которая гласит

    Управление транспортным средством, на передней части которого установлены световые приборы с огнями красного цвета или световозвращающие приспособления красного цвета, а равно световые приборы, цвет огней и режим работы которых не соответствуют требованиям Основных положений по допуску транспортных средств к эксплуатации и обязанностей должностных лиц по обеспечению безопасности дорожного движения, влечет лишение права управления транспортными средствами на срок от шести месяцев до одного года с конфискацией указанных приборов и приспособлений.

    То есть, как бы попадаем по полной. Можно лишиться прав — аж до одного года. Однако здесь есть лазейки и не всегда так просто доказать что у вас стоят светодиоды.

    Лазейки в законе

    Начну с того что — согласно приказу МВД, контроль за техническими параметрами происходит только на стационарном посту, инспектором технического надзора ГИБДД И ТОЛЬКО СРЕДСТВАМИ ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ внесенными в государственный реестр типов и средств измерений!

    То есть обычный рядовой сотрудник ГИБДД, в 95% случаев не имеет таких полномочий — самое ГЛАВНОЕ КВАЛИФИКАЦИИ и оборудования, а значит, он не может проверить у вас лампочки.

    Для примера, ксенон вычисляется на раз, ДАЖЕ ОБЫЧНЫМ СОТРУДНИКОМ БЕЗ ОБОРУДОВАНИЯ, достаточно открыть капот:

    Во-первых , он имеет другой цвет, нежели положенный обычным галогеновым лампам (а это уже пункт 3.1) и вычислить это не трудно

    Во-вторых , после того как откроете капот, инспектор может увидеть блоки розжига и заподозрить вас в неправомерной установке. А установка таких блоков это уже изменение в конструкции

    В-третьих , на КСЕНОНЕ должна обязательно стоять автоматическая коррекция фар, линзы, и омыватель. Если этого НЕТ – ВЫ ПОПАЛИ.

    А вот с LED лампочками в фарах головного света не все так просто. Они имеют четкую светотеневую границу, они имеют практически такой же цвет что и галоген (ну может чуть белее, хотя производители сейчас подбирают очень хорошо). У них нет никаких блоков розжига, то есть конструктивно фара не страдает (и из подкапотного пространства ее вычислить очень сложно). ДА и определить их также не просто даже визуально, потому как зачастую закрыты металлическими колпачками снаружи.

    НО что делать, если инспектор ГИБДД попался очень настойчивый и хочет прямо таки доказать что у вас стоит что-то плохое в фарах? Даю расклад по пунктам:

    • Вас останавливает инспектор, кстати, сейчас вы его можете снимать и лучше это делать, для вашего доказательства, если вдруг понадобиться (просто поверните в его сторону видеорегистратор, попросите друга снимать, ну если нет ни того ни другого можете снимать сами). Но нужно это делать максимально корректно, без всякого рода задираний!
    • Отдаете ему права и задаете вопрос, а какая причина остановки? Допустим, он говорит – «что есть подозрение на установку ксенона» и говорит – «открывайте капот и тушите фары». Тут друзья, нужно понимать, что это просьба, а не приказ, И КАК БЫ ВЫПОЛНЯТЬ ЕГО ВЫ НЕ ОБЯЗАНЫ! Вам нужно задать вопрос – «для осмотра или для досмотра». Если «ДЛЯ ОСМОТРА» пусть ходит и осматривает, вы не должны ничего открывать и выключать. Если «ДЛЯ ДОСМОТРА», то ему нужны два понятых для того чтобы по закону досмотреть ваш авто (а как правило это ночь, если фары горят, и найти их не так-то просто), конечно инспектор (по закону) может вас снимать на камеру, но лучше ему про это не говорить (пусть ищет понятых).
    • ДОПУСТИМ, ОН приводят двух понятых, теперь они могут открывать ваш автомобиль, лезть под капот, багажник и прочее. ТЕПЕРЬ – ЕСЛИ ОНИ ОТКРЫВАЮТ КАПОТ и видят там блок розжига ксенона, то вам капец (пахнет лишением прав). А вот если ваша светодиодная лампа СПРЯТАНА ПОД КРЫШКУ в фаре, и снаружи ничего не видно, ТО ВСЕ ХОРОШО. РАЗБИРАТЬ ФАРУ (нарушать конструктивную целостность) – НЕЛЬЗЯ!

    Согласно статье 27.9 КоАП

    1. Досмотр транспортного средства любого вида, то есть обследование транспортного средства, проводимое без нарушения его конструктивной целостности , осуществляется в целях обнаружения орудий совершения либо предметов административного правонарушения.

    Если же все сотрудник ГИБДД нарушит целостность, тем самым он вызовет неисправность которая запрещает эксплуатацию ТС.

    • Есть и такой вариант, что инспектор не разбирая определил снаружи – ЧТО У ВАС СТОЯТ СВЕТОДИОДЫ. Еще раз читаем статью 12.5 часть 3, «цвет огней и режим работы» которых не соответствует требованиям ГОСТ. Ссылаются на ГОСТ 51709 – он очень большой, но нам нужно понять из него, что все световые приборы должны работать в постоянном режиме, кроме сигналов поворота и аварийной сигнализации (эти должны работать в проблесковой сигнализации). Свет фары называется «постоянный ближний» НА НЕ СООТВЕТСТВИИ его работы уже должен проверять сотрудник технического надзора, а не сотрудник ГИБДД, который как мы выяснили, не имеет на это КВАЛИФИКАЦИИ.
    • НУ и последнее опять 12.5 часть 3 — «цвет огней и режим работы». Если у вас цвет фар белый, а не синий или желтый (как скажем на КСЕНОНЕ). То вас по этой статье привлечь НЕЛЬЗЯ! Хотя если дойдет дело до технического контроля и далее суда то могут.

    НУ и для прочего спокойствия, НО ЭТО ТОЛЬКО В КРАЙНЕМ СЛУЧАЕ, с некоторыми лампами идут различные сертификаты (хотя это по сути фикция), на соответствие всем ГОСТАМ! Этим можно «козырять» уже перед сотрудником технического надзора (если вдруг проверили) – «мыл не знал, сказали что есть все разрешения, сертификаты и прочее». То есть вина как бы, лежит не на вас, а на производителе – ПРАВ ВАС ЛИШИТЬ НЕ МОГУТ.

    Вот такая вот канитель, как видите с этими лампами очень все не просто, сотрудники ГИБДД про это знают и поэтому с ними попросту не связываются. ДА и если честно определить их сложно, ведь они реально похожи на мощный галоген.

    Если на вашей марке в максимальной комплектации есть LED

    Здесь дела обстоят лучше. Вам не нужно проходить никакие проверки соответствия безопасности. Согласно пункту 77, раздела 4, главы V технического регламента таможенного союза:

    1) при установке на транспортное средство компонентов:

    Легкость монтажа, надежность и долговечность сделали диодные осветительные ленты очень популярными.

    Если для установки в качестве источника освещения выбрана светодиодная лента, как установить своими руками на потолок и эксплуатировать такое устройство – основные вопросы, волнующие потребителя.

    Светодиодные осветительные ленты представлены стандартным диэлектриком, оснащенным токопроводящими дорожками, и имеющим контактные площадки для SMD-компонентов в виде светодиодов и резисторов. Стандартное устройство включает в себя отдельные модули длиной 2,5-10 см. На каждый такой модуль приходится несколько диодов и резисторов, отвечающих за ограничение потребляемого тока.

    При выборе нужно обратить внимание на маркировку изделия, которая состоит из нескольких обозначений:

    • тип прибора;
    • показатели напряжения;
    • цвет свечения;
    • тип монтажа элементов;
    • размеры диодных чипов;
    • количество диодов в одном метре ленты;
    • класс защиты изделия.

    Современные диодные ленточные осветители имеют белое (W), синие (B), красное (R) или зеленое (G) свечение. Также реализуются многоцветные RGB-ленты. Однорядные ленты отличаются плотностью диодов, кратной 30, а двойные ленты – кратной 60.

    Особое внимание нужно обратить на размеры диодных чипов . Именно такие параметры характеризуют величину светового потока:

    • SMD-3528 с мощностью 4,8-19,2 Вт/м;
    • SMD-5050 с мощностью 7,2-14,4 Вт/м;
    • ленты SMD-5060;
    • ленты SMD-5630;
    • ленты SMD-5730.

    При выборе диодной осветительной ленты нельзя не учитывать степень защиты IP. Оптимальные показатели гарантируют безопасную и максимально продолжительную эксплуатацию источника света.

    Светодиодные ленточные осветители класса IP-65 – IP-68 имеют лучшую влагозащитную степень, но часто характеризуются недостаточным уровнем теплоотвода, что обусловлено наличием оболочки из силикона.

    Поэтому такие приборы целесообразно монтировать только в помещениях с избыточной влажностью.

    Разъемы

    Заводская комплектация полностью готовой к установке ленты, предполагает наличие разъёмов, присоединяемых к источнику электрического питания.

    Однако, в нарезанных элементах нет готовых контактов, поэтому применение коннекторов с разъёмами – единственно правильный вариант для подключения осветительного прибора.

    Стоимость коннектора в значительной степени варьируется в зависимости от функционального назначения.

    Конекторные устройства могут быть не только соединительными, но и соединительно-запитывающими, предназначенными для подключения к таким устройствам, как источник питания, контролер или диммер.

    Изоляция

    С целью изоляции используется чаще всего термоусадочная трубка, которая способна в результате нагревания уменьшаться в размерах, усаживаться и плотно облегать контакты.

    Благодаря таким свойствам удаётся не только получить электрическую изоляцию, но и повысить уровень механической прочности.

    Чтобы самостоятельно выполнить изоляцию, необходимо отрезок длиной 20мм одеть на контактную группу диодной ленты и выполнить нагрев обычной бытовой зажигалкой или строительным феном со специальным узким соплом.

    Соединение двух лент между собой

    Коннекторы с разъёмами – удобная и простая альтернатива традиционному подключению, позволяющая выполнить повторное соединение отрезков ленточных диодных осветителей, или объединить несколько диодных лент в единую систему.

    В настоящее время реализуются коннекторы, имеющие один или несколько разъемов, поэтому при выборе нужно учитывать тип диодной ленты и вид соединения, которое может быть жёстким или гибким.

    Подключение двух и более светодиодных лент

    Важно помнить, что полностью исключается возможность применения контролера с разъёмами в помещениях с повышенной влажностью, что обусловлено риском окисления контактов и выходом устройства из строя.

    Расчёт светодиодной ленты и блока питания

    Светодиодные ленточные осветители работают от постоянного тока, а подключение выполняется к источнику напряжения 12 В или 24 В. По этой причине для запитывания от обычной электросети используются преобразующие импульсные блоки питания, которые обязательно должны соответствовать мощности осветительного прибора. Уровень мощности можно определить по табличным данным.

    Выбор блока питания

    На сегодняшний день производится и реализуется несколько вариантов блоков питания в разном исполнении:

    • Компактное и герметичное устройство с пластиковым корпусом, характеризующееся небольшими размерами и весом, а также достаточным уровнем защиты от влаги. Максимальные показатели мощности не превышают 75Вт. Прибор предназначен для запитывания диодных лент при интерьерной подсветке.
    • Герметичное устройство с алюминиевым корпусом, средней мощностью 100Вт. Такой вариант прибора характеризуется достаточно ощутимым весом и габаритами, поэтому находит широкое применение при выполнении подсветки в уличных устройствах. Отличается повышенной надёжностью и хорошей защитой от неблагоприятных внешних факторов, представленных ветром, атмосферными осадками и ультрафиолетом.
    • Устройство открытого типа со средней мощностью в 100Вт. Прибор больших размеров, предназначенный для установки в аппаратный отсек или специальный шкаф. Основное достоинство такого варианта представлено доступной стоимостью.

    Таким образом, чтобы правильно выбрать блок питания, необходимо определится не только с типом осветительной ленты, но и её мощностью.

    Чтобы самостоятельно определить уровень мощности, на который рассчитан блок питания, необходимо мощность диодного осветительного прибора в 1 м.п. умножить на длину ленты и прибавить к полученному результату примерно 10% запаса. Стандартный коэффициент запаса составляет 1,15.

    Необходимые инструменты

    Чтобы выполнить монтаж светодиодного ленточного осветительного прибора, необходим стандартный набор материалов и инструментов, представленный:

    • непосредственно диодной лентой;
    • блоком питания;
    • монтажным инструментом в виде ножа и ножниц;
    • электрическим паяльником на 25-40Вт;
    • канифолью и легкоплавким припоем типа «ПОС-61»;
    • электрическими проводами с минимальным сечением 0,75мм 2 ;
    • термоусаживающей трубкой;
    • специальным феном или газовой бытовой зажигалкой;
    • наконечниками для электрических проводов;
    • специальным обжимным инструментом.

    Как показывает практика, оптимальный флюс для пайки может быть представлен обычной канифолью, которую следует предварительно растворить в небольшом количестве спирта.

    Чтобы обойтись без трудоёмкого спаивания, целесообразно приобрести разъёмные коннекторы, предназначенные для монтажа ленточного диодного светильника. Такие устройства обладают системой прижимных контактов, и позволяют обеспечить легкое подключение.

    Монтаж подсветки

    Итак, рассмотрим, как установить светодиодные ленты для подсветки потолка. Самостоятельно установить светодиодную ленту абсолютно не сложно. Предварительно следует примерить ленту на участке монтажа, и разметить места для отверстий под крепежные элементы.

    Дальнейшая установка осуществляется в соответствии со следующей пошаговой, интуитивно понятной инструкцией:

    • Подготовительные мероприятия с проводами или шлейфом включают в себя зачистку кончиков на 3-5мм и последующее скручивание. На скрутку нужно нанести каплю спиртового флюса и залудить при помощи паяльника. Можно вжимать участок скрутки проводов посредством горячего жала паяльника в канифоль, после чего погружать в расплавленный припой.
    • Соединение проводов осуществляется в соответствии с цветовой маркировкой, а шлейфовые проводники подводятся к контактной площадке на ленте. Стандартное время спаивания не должно превышать 7-8 секунд.
    • На пайку и проводную группу надевается термоусадочная трубка и фиксируется посредством нагрева. Прежде чем приступить к обжатию трубки-изолятора, все участки пайки рекомендуется подвергнуть герметизации посредством силиконового герметика.

    Схема монтажа светодиодной ленты

    На заключительном этапе монтажа следует подключить диодный ленточный осветительный прибор на клеммы таких устройств, как блок питания, контроллер или усилитель, после чего внимательно проверить правильность всей выполненной схемы. Контролеры применяются только при необходимости плавно управлять уровнем яркости и цветом светодиодных лент.

    При правильно выполненном самостоятельном подсоединении, после включения напряжения диоды ленты загораются. В противном случае придётся демонтировать осветительное устройство или проверить работоспособность всех элементов схемы подключения.

    Как установить светодиодную ленту на кухне?

    Во влажных помещениях и кухне устанавливаются герметичные ленты, для крепления которых на стене или потолочной поверхности чаще всего применяются специальные пластиковые хомуты или клипсы:

    • соединить контакты диодной ленты с проводами посредством спаивания или специальными коннекторами;
    • заизолировать места соединений изоляционной лентой или термоусадочной трубкой;
    • при установке ленты на профиль посредством двухстороннего скотча поверхность должна быть сухой, чистой и обезжиренной;
    • наклеить светодиодную ленту, постепенно удаляя верхнюю плёночную защиту и прижимая осветительное устройство;
    • установить в заранее выделенном месте трансформатор.

    При создании подсветки из нескольких диодных элементов, их объединение в единую систему должно быть строго параллельным, а участки соединения убираются в пластиковые специальные чехлы.

    В последнее время потребители отдают предпочтение не традиционным выключателям, а современным диммерам, которые устанавливаются вместе с блоком питания. На заключительном этапе осуществляется проверка работоспособности установленного освещения.

    Видео на тему

    В эпоху Зевсов и Гераклов каждый земной день начинался с того, что богиня утренней зари Эос выезжала на небо. Везли ее два бессмертных коня - Фаэтон и… Лампа. Заметим, что коня по имени Светодиод на Олимпе точно не было. Однако человечество решило-таки отказаться от ламп накаливания и газоразрядных аналогов в пользу более экономичных и долговечных полупроводниковых источников света. Сегодня их устанавливают в головную светотехнику даже сравнительно недорогих автомобилей.

    Долой галогенки!

    Автомобильные светодиоды в начале своей карьеры сами себе испортили репутацию: вторичный рынок был завален откровенным «леваком». Как правило, источник света для головной оптики представлял собой десяток дохленьких светодиодов, светивших в разные стороны, - о правильном светораспределении не стоило и мечтать. Однако вскоре появилось изделие Philips LED headlight, в котором узенькие полоски светодиодов в точности соответствовали расположению нити накаливания в обычной лампочке. А вскоре схожие по конструкции стали выпускать многие китайские мануфактуры.

    Вообще-то, нельзя устанавливать светодиоды в фары, омологированные под галогенки, и мы не раз об этом . Но восточные производители упорно пишут на упаковках своих изделий Н4 или Н7! Незаконно? Безусловно. Однако оставим пока юридическую сторону вопроса. Наша главная задача - испытать светодиоды на профпригодность. С этой целью мы приобрели пять комплектов для установки в фары, предназначенные для работы с лампами Н4. Обращаем внимание, что все купленные светодиоды способны работать при напряжении как 12 В, так и 24 В. Это говорит о том, что в них применены добротные блоки стабилизации питания - так называемые драйверы.

    Отличия лампы, пытающейся быть правильной (верхнее фото), от совершенно непригодной: в правильной лампе предусмотрены отдельные линейки светодиодов на дальний и ближний свет. Эти линейки по величине и расположению похожи на спираль накаливания в обычной лампе. В правильной лампе имеется экран, прикрывающий нижнюю полусферу светящегося элемента ближнего света. Кроме того, правильная лампа снабжена драйвером, позволяющим работать при напряжении 12–24 В, а также радиатором охлаждения.

    Отличия лампы, пытающейся быть правильной (верхнее фото), от совершенно непригодной: в правильной лампе предусмотрены отдельные линейки светодиодов на дальний и ближний свет. Эти линейки по величине и расположению похожи на спираль накаливания в обычной лампе. В правильной лампе имеется экран, прикрывающий нижнюю полусферу светящегося элемента ближнего света. Кроме того, правильная лампа снабжена драйвером, позволяющим работать при напряжении 12–24 В, а также радиатором охлаждения.

    Реглоскоп слушает

    Начнем с простенькой проверки - возможно, на ней всё и кончится. Едем на станцию техобслуживания к старому другу журнала Анатолию Вайсману, чтобы испытать светодиоды непосредственно на автомобиле. В качестве носителя мы взяли популярный Кia Rio. Этот автомобиль выбрали еще и потому, что . Между прочим, многие ставят светодиоды вместо галогенок исключительно для того, чтобы пореже менять лампы, ведь на некоторых машинах эта операция трудоемкая (например, приходится снимать бампер) и, соответственно, дорогая.

    Мастер автосервиса загоняет автомобиль на площадку и устанавливает перед фарой реглоскоп - таким прибором проверяют светотехнику на обязательном техническом осмотре. Начинаем со штатной галогенной лампы. Всё в норме! Теперь посмотрим, какое светораспределение дадут светящиеся полупроводники.

    Провалились три изделия из пяти: вместо образцовой «галочки» на экране появлялось нечто смахивающее на НЛО из телевизионной страшилки. А вот двое испытуемых - Philips LED headlight и G7 Head light conversion kit - дали приемлемую картинку. И если во время техосмотра проверяющий инспектор не станет внимательно разглядывать сквозь прозрачный колпак фары, какая лампа в ней установлена, то и претензий у него, по идее, быть не должно. Кроме того, в фарах с рассеивателем или линзованной оптикой разглядеть лампочку снаружи не удастся! В общем, вероятность проскочить техосмотр весьма высока.

    Получается, что некоторые светодиоды все-таки можно (по крайней мере, с технической точки зрения) устанавливать в фары? Чтобы получить точное подтверждение, мы обратились в «высший суд» - испытательный центр ООО «НТЦ АЭ», где провели контрольные испытания светодиодных источников на соответствие требованиям Правил ЕЭК ООН № 112–00 в отношении ближнего света.


    Примерная цена 2000 руб.

    Ток потребления - 1,37 А (штатный «галоген» кушает примерно 4,16 А). Реглоскоп сразу отловил в фаре засветку слева. Лабораторные замеры подтвердили: в точке B50L сила света составляет 2,0 кд вместо допустимых 0,6 кд. В зоне III - семикратное превышение силы света. Единственное достоинство - крышку на фаре Kia удалось закрыть.


    Примерная цена 4650 руб.

    Ток потребления - 1,57 А.  Крышка фары Kia закрылась. Лампа дает возможность подрегулировать угловое положение относительно держателя. Проверка в гаражных условиях дала было зеленый свет изделию: светораспределение понравилось. Однако более тщательные замеры в испытательном центре все-таки выявили отклонения от нормы: в точке B50L оказалось 0,8 кд вместо 0,6 кд, в зоне III - 1,6 кд вместо 1,0 кд. Жаль, ­но - не соответствует нормам.


    Примерная цена 10 000 руб.

    Ток потребления - 1,65 А. В описании честно сказано, что требуется свободное пространство: 70 мм позади фары и 60 мм в диаметре. Лампа позволяет регулировать угловое положение относительно держателя. Крышка на Kia не закрылась из-за огромного блока драйвера. Светораспределение по реглоскопу вывело изделие в лидеры. Однако всё в тех же точках эксперты выявили отклонения от допуска: 2,0 кд вместо 0,6 кд в точке B50L и 2,82 кд вместо 1,0 кд в зоне III. В общем, эти лампы светят лучше прочих проверенных, но на дороги общего пользования с ними выезжать нельзя.


    Примерная цена 2300 руб.

    Ток потребления - 1,35 А.  Крышка фары Kia закрылась. А вот параметры - хуже некуда. Отклонения отмечены в точках B50L, 75R и в зоне III (аж в 13,2 раза!). Вердикт: отказать!


    Примерная цена 4500 руб.

    Ток потребления - 1,48 А.  Крышку фары Kia удалось закрыть. Крепление сильно качается. Светораспределение не соответствует норме в точке B50L и зоне III, многократно превышая допустимый рубеж. А можно ли ждать иного от лампы, светодиоды которой имеют форму жирных кругов, никак не напоминающих спирали? Приговор: не покупать.

    Отказать!

    Полупроводники… провалились. Всей толпой. Все светодиодные , поочередно размещенные сотрудниками испытательной лаборатории в фаре ГАЗели, слепили встречного водителя, а самые дешевые вдобавок отказались нормально освещать правую обочину. Лучше других, естественно, выглядели те, которые показали нормальную картинку на реглоскопе, - Philips LED headlight и G7 Head light conversion kit. Кстати, сила света у них потрясающая: например, Philips в точке 50R выдал 100 кд (кандела - единица измерения силы света), вдесятеро перекрыв норматив. Но и они оказались вне закона, результаты - в таблице.

    Кроме того, некоторые источники света неплотно сидят на рабочем месте и слегка вращаются вокруг своей продольной оси. Понятно, что при движении картинка светораспределения будет сбиваться. А рабочая температура разномастных радиаторов охлаждения такая, что мы даже испугались за сохранность пластмассового кожуха фары.

    Еще отметим, что в большинстве случаев заднюю крышку фары Rio при установке светодиодных лампочек удается закрыть - лишь огромный блок лампы Philips под крышку попросту не влез. Фара ГАЗели, на которой проводили стендовые испытания, оказалась менее гостеприимной. А как ездить без крышки? Фара быстро превратится в корзину для мусора.

    СВЕТОРАСПРЕДЕЛЕНИЕ НА ЭКРАНЕ РЕГЛОСКОПА

    И еще. Любой автопроизводитель рекомендует использовать в своих машинах лампы только определенного типа - в нашем случае речь идет о галогенных Н4. Источники света иного типа и конструкции омологацию не проходили, и, следовательно, по закону их нельзя устанавливать. По этой причине замена галогенных источников света светодиодными - незаконная , за которую производитель автомобиля не несет ответственности. Но действующие Правила запрещают эксплу­атацию таких машин.

    Что касается заявлений производителей светодиодных источников света о полном соответствии их оригиналу, равно как и надписей Н4 на коробках, то это откровенный обман. Для обозначения светодиодов должна использоваться только буква L, а одобрить их установку вместо галогенных ламп вправе лишь производитель автомобиля или .

    Кстати, на наш запрос представители компании Philips официально ответили, что не следует выезжать на дороги общего пользования с таким светом. Эти лампы предназначены в первую очередь для квадроциклов, снегоходов и прочей внедорожной техники. Однако продавцам восточных светильников все эти тонкости, извините за каламбур, до лампочки. Светит? Разъем подходит? ­Пользуйтесь на здоровье!

    В общем, не случайно в олимпийской конюшне не было коня Светодиода. Боги предпочли пользоваться услугами верной Лампы… Что и вам советуем!

    РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ФАРЫ СО СВЕТОДИОДНЫМИ ИСТОЧНИКАМИ СВЕТА

    Контрольные точки

    Нормированное значение силы света, кд

    Фактическое значение силы света, кд

    Clearlight ­
    Flex LED

    V16 Turbo
    LED

    B50L

    ≤ 0,4 (0,6)*

    2,0

    0,8

    2,0

    0,6

    4,0

    ≥ 12 (9,6)

    34,6

    27,0

    50,0

    4,4

    33,4

    ≥ 12 (9,6)

    55,0

    36,0

    100,0

    12,4

    47,6

    ≥ 6, 0 (4,8)

    42,22

    24,0

    66,0

    45,6

    Зона III**

    ≤ 0,7 (1,0)

    7,0