Войти
Образовательный портал. Образование
  • Гороскоп здоровья — Близнецы
  • Безе: состав, калорийность, пищевая ценность, полезные свойства, вред
  • Сонник: к чему снится Операция
  • Салат из свежей капусты и огурца
  • К чему снится голубка. Большой онлайн сонник. Сонник Мартына Задеки
  • К чему снится когда за тобой гонятся
  • Медленное включение и выключение светодиодов. Плавное включение и выключение нагрузки. Пояснения к коду

    Медленное включение и выключение светодиодов. Плавное включение и выключение нагрузки. Пояснения к коду

    Для красивой подсветки отдельных деталей автомобиля, фонарей подсветки, панели приборов, габаритных огней. Получается довольно интересный эффект, при котором вы отключаете питание объекта с подсветкой, а он плавно затухает в течении 5 – 10 секунд…

    Как реализовать плавное выключение светодиодов

    Для реализации нам с Вами понадобятся такие компоненты:

    1. Собственно светодиод.
    2. Конденсатор (электролитический, большой емкости).
    3. Диод.
    4. Резистор, если используют светодиоды на 3.5 В.
    5. Паяльник, олово, флюс.

    Начнем с объекта. Куда можно поставить? Ну, тут все зависит от Вашей фантазии. Габаритные огни, салонный свет, подсветка приборов – и много других мест, куда можно вставить плавно выключающийся светодиод. Я в скором времени реализую плавное выключение салонного плафона, то есть, чтобы при закрытии дверей он горел еще некоторое время. Также, если Вы изготавливаете , в сочетании с ними получится не плохо.

    Ну что же начнем. Назначение всех элементов, я думаю, понятно, но не лишним будет повториться. Светодиод нужен для того, чтобы излучались световые волны:). Конденсатор – этот элемент и сохраняет напряжение, которое расходуется при отключении питания. Диод – используется для того, чтобы ток не ушел на другие потребители, другими словами – исполняет роль своеобразного клапана (туда пускает, назад нет).

    Изготовление плавно гаснущих светодиодов

    Набросаю такую вот интуитивно понятную схемку:

    На схеме мы видим, что ничего сложного нет. Так что беремся за паяльник и вперед. Оговорюсь, что нужно узнать, как точно подключать компоненты. Электролитические конденсаторы имеют свойства разлетаться с выстрелом! Так что внимательно смотрим на фото:

    Диод тоже важно правильно подключить:


    Ну, вроде разобрались. Что касается номиналов деталей, диод подойдет почти любой, так как ток небольшой. Конденсатор – емкость подбираем индивидуально, чем больше емкость, тем дольше горит светодиод после отключения питания. Напряжение на конденсаторе минимум 16В.

    Плавное включение светодиода с помощью ШИМ (PWM) на Arduino рассмотрим на этой странице. Рассмотрим, как подключить светодиод, разберем что такое ШИМ (Широтно-Импульсная Модуляция). Также мы подробно рассмотрим цикл for в языке программирования C++, который служит для повторения операторов, заключенных в конструкцию (операторы, находящиеся внутри фигурных скобок в скетче).

    Плавное включение светодиода на Ардуино

    Чтобы вспомнить, что такое Ардуино , используем простой скетч плавного включения светодиода. Для этого можно использовать цикл for. Заголовок данной конструкции состоит из трех частей: for (initialization; condition; increment) — initialization выполняется один раз, далее проверяется условие condition , если условие верно, то выполняется приращение increment и цикл повторяется пока верно условие (condition).

    В приведенном примере мы будем плавно изменять яркость светодиода с помощью ШИМ, светодиод будет плавно разгораться, а затем плавно гаснуть. Данный пример можно использовать для декоративной подсветки в комнате на светодиодах или ночного светильника с управлением от пульта дистанционного управления. Подключите светодиод к аналоговому порту Pin6 и загрузите следующий скетч.

    Управление светодиодом с помощью ШИМ Ардуино

    Для занятия нам понадобятся следующие детали:

    • плата Arduino Uno / Arduino Nano / Arduino Mega;
    • макетная плата;
    • 1 светодиод и 1 резистор 220 Ом;
    • провода «папа-папа» и «папа-мама».
    Схема. Плавное мигание светодиодом на Ардуино

    Скетч плавного включения светодиода от Ардуино

    #define LED_PIN 6 // задаем имя для Pin6 void setup () { pinMode (LED_PIN, OUTPUT ); // инициализируем Pin6 как выход } void loop () { // плавное включение светодиода // начальное значение на Pin6 i=0, если i<=255, то прибавляем к i единицу for (int i=0;i<=255;i++) { analogWrite (LED_PIN, i); delay (5); } //плавное затухание светодиода // начальное значение на Pin6 i=255, если i>=255, то вычитаем от i единицу for (int i=255;i>=0;i--) { analogWrite (LED_PIN, i); delay (5); // ставим задержку для эффекта } }

    Пояснения к коду:

    1. цикл for повторяется до тех пор, пока верно условие i<=255 или i>=0 ;
    2. для цикла for следует обязательно прописывать в круглых скобках следующие значения — (инициализация; условие; приращение) ;
    3. конструкция цикла for должна располагаться между фигурными скобками { } .

    Помимо чисто декоративной функции, например, подсветки автосалона, применение плавного включения, или розжига, имеет основательное практическое значение для светодиодов – существенное продление срока службы. Поэтому рассмотрим, как сделать своими руками устройство для решения такой задачи, стоит ли вообще самостоятельно его мастерить или лучше купить готовое, что для этого потребуется, а также какие варианты схем при этом доступны для любительского изготовления.

    Первейший вопрос, возникающий при необходимости включения в схему модуля плавного розжига светодиодов, это сделать ли его самостоятельно или купить. Естественно, легче приобрести готовый блок с заданными параметрами. Однако у такого способа решения задачи есть один серьезный минус – цена. При изготовлении своими руками себестоимость такого приспособления снизится в несколько раз. Кроме того, процесс сборки не займет много времени. К тому же, существуют проверенные варианты устройства – остается лишь обзавестись нужными компонентами и оборудованием и правильно, в соответствии с инструкцией их соединить.

    Обратите внимание! Лэд-освещение находит широкое применение в автомобилях. Например, это могут быть дневные ходовые огни и внутренняя подсветка. Включение блока плавного розжига для светодиодных ламп позволяет в первом случае существенно продлить срок эксплуатации оптики, а во втором – предотвратить ослепление водителя и пассажиров резким включением лампочки в салоне, что делает подсветительную систему более визуально комфортной.

    Что нужно

    Чтобы грамотно собрать модуль плавного розжига для светодиодов, потребуется набор следующих инструментов и материалов:

    1. Паяльная станция и комплект расходников (припой, флюс и проч.).
    2. Фрагмент текстолитового листа для создания платы.
    3. Корпус для размещения компонентов.
    4. Необходимые полупроводниковые элементы – транзисторы, резисторы, конденсаторы, диоды, лед-кристаллы.

    Однако прежде чем приступить к самостоятельному изготовлению блока плавного пуска/затухания для светодиодов, необходимо ознакомиться с принципом его работы.

    На изображении представлена схема простейшей модели устройства:

    В ней три рабочих элемента:

    1. Резистор (R).
    2. Конденсаторный модуль (C).
    3. Светодиод (HL).

    Резисторно-конденсаторная цепь, основанная на принципе RC-задержки, по сути и управляет параметрами розжига. Так, чем больше значение сопротивления и емкости, тем дольше период или более плавно происходит включение лед-элемента, и наоборот.

    Рекомендация! В настоящий момент времени разработано огромное количество схем блоков плавного розжига для светодиодов на 12В. Все они различаются по характерному набору плюсов, минусов, уровню сложности и качеству. Самостоятельно изготавливать устройства с пространными платами на дорогостоящих компонентах нет резона. Проще всего сделать модуль на одном транзисторе с малой обвязкой, достаточный для замедленного включения и выключения лед-лампочки.

    Схемы плавного включения и выключения светодиодов

    Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:

    1. Простейшая.
    2. С функцией установки периода пуска.

    Читайте также Динамическая подсветка монитора: характеристика, схема, настройка

    Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.

    Простая схема плавного включения выключения светодиодов

    Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.

    В ее основе лежат следующие комплектующие:

    1. IRF540 – транзистор полевого типа (VT1).
    2. Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
    3. Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
    4. Led-кристалл.

    Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:

    1. При запитывании цепи через блок R2 начинает течь ток.
    2. Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
    3. Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
    4. Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.

    Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.

    Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).

    Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:

    1. Сила тока стока – в пределах 23А.
    2. Значение полярности – n.
    3. Номинал напряжения сток-исток – 100В.

    Важно! Ввиду того, что быстрота розжига и затухания светодиода полностью зависит от величины сопротивления R3, можно подобрать необходимое его значение для задания определенного времени плавного пуска и выключения лед-лампочки. При этом правило выбора простое – чем выше сопротивление, тем дольше зажигание, и наоборот.

    Доработанный вариант с возможностью настройки времени

    Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента – R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.

    На просторах интернета имеется множество схем плавного розжига и затухания светодиодов с питанием от 12В, которые можно сделать своими руками. Все они имеют свои достоинства и недостатки, различаются уровнем сложности и качеством электронной схемы. Как правило, в большинстве случаев нет смысла сооружать громоздкие платы с дорогостоящими деталями. Чтобы кристалл светодиода в момент включения плавно набирал яркость и также плавно погасал в момент выключения, достаточно одного МОП транзистора с небольшой обвязкой.

    Схема и принцип ее работы

    Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость. В начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

    В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

    Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала.
    Любую из схем можно самостоятельно собрать на плате небольшого размера.

    Элементы схемы

    Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

    Вместо IRF540 можно воспользоваться отечественным аналогом КП540.

    Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

    Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

    Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

    Управление по «минусу»

    Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.

    Читайте так же

    Недавно решил собрать схему, которая позволила бы мне любую светодиодную ленту (будь то в автомобиле или дома) плавно разжигать. Изобретать велосипед я не стал, и решил немного по Google ить. При поиске почти на каждом сайте находил схемы, где светодиодная нагрузка сильно ограничивается возможностями схемы.

    Мне же хотелось, чтобы схема всего лишь плавно поднимала напряжение на выходе, чтобы диоды плавно разгорались и схема было обязательно пассивной (не требовала дополнительного питания и в режиме ожидания не потребляла бы ток) и обязательно была бы защищена стабилизатором напряжения для увеличения срока жизни моей подсветки.

    А так как плат пока я травить не научился, то решил что сначала нужно освоить самые простые схемы и при монтаже использовать готовые монтажные платы, которые как и остальные компоненты схемы, можно приобрести в любом магазине радиодеталей.

    Для того что собрать схему плавного розжига светодиодов со стабилизацией мне нужно было приобрести следующие компоненты:

    Вообще, готовая монтажная плат достаточно удобная альтернатива так называемому методу “ЛУТ” где с помощью программы Sprint-Layout, принтера и того же текстолита можно собрать почти любую схему. Так вот, новичкам следует всё таки сначала освоить более простой вариант, который значительно проще и что самое главное “прощает ошибки” и так же не требует наличия паяльной станции.

    Немного упростив исходную схему решил её перерисовать:

    Знаю что на схемах транзистор и стабилизатор обозначается не так, но мне так проще, а вам будет нагляднее. А если же вы, как и я, успели позаботиться о стабилизации, то вам нужна ещё более простая схема:

    Тоже самое, только без использования стабилизатора КРЕН8Б.

    • R3 - 10К Ом
    • R2 - 51К Ом
    • R1 - от 50К до 100К Ом (сопротивлением этого резистора можно управлять скоростью розжига светодиодов).
    • С1 - от 200 до 400мк Ф (можно и выбрать другие ёмкости, но превышать 1000мк Ф не стоит).

    На тот момент мне нужны были две платы плавного розжига:
    - для уже сделанной подсветки ног.
    - для плавного розжига приборной панели.

    Так как о стабилизации светодиодов подсвечивающих мои ноги я уже давно позаботился, то в схеме розжига КРЕНка уже была не нужна.

    Схема плавного розжига без стабилизатора.

    Для такой схемы я использовал всего 1.5 кв см монтажной платы, которая стоит всего 60 рублей.

    Схема плавного розжига со стабилизатором напряжения.

    Размеры 25 х 10 мм.

    Достоинствами данной схемы является то, что подключаемая нагрузка зависит только от возможностей блока питания (аккумулятора авто), и от полевого транзистора IRF9540N, который очень надежен (дает возможность подключить через себя 140Вт нагрузки при токе до 23А (информация из интернета). Схема сможет выдержит 10 метров светодиодной ленты, но тогда транзистор придется охлаждать, благо в таком исполнении можно закрепить на полевик радиатор (что конечно приведёт к увеличению площади схемы).

    При первом тестировании схемы было снято коротенькое видео:

    Изначально R1 стоял номиналом 60К Ом и мне не понравилось то что розжиг до полной яркости занимал около 5-6 секунд, в последствии к R1 был допаян ещё один резистор на 60К Ом и время розжига уменьшилось до 3 секунд, что для подсветки ног было самое то.

    А так как схему розжига для подсветки ног необходимо было подключать в разрыв основной схемы питания, то не долго думая как же её заизолировать, просто запихнул её в кусок велосипедной камеры.

    Подключив схему плавного розжига снял ещё одно видео:

    На этом всё, благодарю всех тех кто всё таки смог дочитать сей пост до конца. Конечно же для кого то это будет жёстким баяном, но надеюсь найдутся товарищи которым будет интересно.