Войти
Образовательный портал. Образование
  • Гороскоп здоровья — Близнецы
  • Безе: состав, калорийность, пищевая ценность, полезные свойства, вред
  • Сонник: к чему снится Операция
  • Салат из свежей капусты и огурца
  • К чему снится голубка. Большой онлайн сонник. Сонник Мартына Задеки
  • К чему снится когда за тобой гонятся
  • Опасная норма радиации. Универсальная методика радиационного контроля Методы исследования мощности дозы гамма излучения

    Опасная норма радиации. Универсальная методика радиационного контроля Методы исследования мощности дозы гамма излучения

    2.1. При прохождении через вещество узкого (парал­лельного) пучка γ-излучения его интенсивность J умень­шается по экспоненциальному закону. Из этого следует, что мощность поглощенной дозы .

    где (см 2 /г) - массовый коэффициент истинного по­глощения анергии γ-излучения в данном веществе.

    Для узкого пучка моноэнергетического γ-излучения с энергией Е γ (МэВ) имеет место соотношение между мощ­ностью поглощенной дозы в воздухе р (Гр/с) и плотностью потока фотонов φ (см -2 ·с -1):

    (1)

    где относится к воздуху. В табл. 1.3 приведены линей­ные коэффициенты ослабления μ и массовые коэффициен­ты поглощения μ am для воздуха, воды и свинца.

    В случае немоноэнергетического γ-излучения в формулу (1.16) нужно подставить среднюю энергию фотонов E γ и усредненное по энергиям фотонов значение μ am .

    Мощность поглощенной дозы направленного пучка γ-излучения в любом веществе, в том числе в мягкой биологи­ческой ткани (воде), определяется при подстановке в (1.16) вместо значения μ am для этого вещества.

    Таблица 2.1.

    Линейные коэффициенты ослабления μ (см -1)

    и массовые коэффициенты поглощения энергии μ am (см 2 /г)

    для узкого пучка γ-излучения

    2.2. Соотношение между мощностью дозы и активностью источника γ-излучения. Активность радионуклида в ис­точнике измеряется в беккерелях, Бк. Внесистемная единица активности - кюри, 1 Ки = 3,7 10 10 Бк.

    Пусть имеется точечный γ-источник активностью А (Бк), испускающий γ-излучение изотропно во все стороны пространства. Найдем мощность поглощенной дозы в (воз­духе на расстоянии R (м) от источника, пренебрегая погло­щением -у-излучения на пути от источника к данной точке. Поскольку плотность потока фотонов от точечного источ­ника убывает обратно пропорционально квадрату расстоя­ния, то мощность поглощенной дозы в воздухе р (Гр/с) равна

    Здесь Г СИ - гамма-постоянная радионуклида, выраженная в единицах СИ - Гр·м 2 /(с·Бк). Она показывает, какую мощность поглощенной дозы в воздухе создает нефильтрованное γ-излучение точечного источника активностью 1 Бк на расстоянии 1 м. Величина гамма-постоянной зависит от схемы распада радионуклида и энергии его γ-излучения. В табл. 1.4 (последний столбец) приведены значения Г СИ для некоторых радионуклидов, выраженные в аГр·м 2 /(с·Бк); приставка а (атто) означает 10 -18 .

    Таблица 2.2.

    Характеристики γ- из лучения некоторых радиоактивных нуклидов

    * Радий в равновесии с продуктами распада до RaD.

    ** То же при платиновом фильтре 0,5 мм.

    Пример 1. Определить мощность поглощенной дозы γ-излучения в воздухе на расстоянии 2 м от точечного ис­точника 60 Со активностью 3,7-10 s Бк. Из табл. 14 нахо­дим Г СИ = 84,63·10 -18 Гр·м 2 / (с·Бк). По формуле (1.17): р = 3,7·10 8 ·84,63·10 -18:4 = 7,83·10 -9 Гр/с = 2,8·10 -5 Гр/ч.

    Для расчета мощности экспозиционной дозы от точеч­ного γ-источника на практике применяют ионизационную гамма-постоянную.

    Ионизационная гамма-постоянная Г радионуклида пока­зывает, какую мощность экспозиционной дозы р экс (Р/ч) создает нефильтрованное γ-излучение точечного изотропно­го источника активностью 1 мКи на расстоянии 1 см. Она выражается во внесистемных единицах - Р-см 2 /(ч-мКи). В табл. 1.4 приведены значения полной ионизационной гам­ма-постоянной Г для некоторых радионуклидов.

    Соотношение между мощностью экспозиционной до­зы и активностью точечного γ -источника имеет следующий вид:

    Здесь: р экс - мощность экспозиционной дозы (Р/ч), А - активность (мКи), r - расстояние (см), Г - полная иони­зационная гамма-постоянная (Р·см 2 /ч·мКи).

    Пример 2. Определить мощность экспозиционной до­зы в условиях предыдущего примера (А = 10 мКи).

    Из табл. 1.4 для 60 Со находим Г= 12,91 Р-см 2 /(ч·мКи). Так как А = 10 мКи, г = 200 см, то по формуле (1.18) р Экс = = 10-12,91: 40000 = 0,0032 Р/ч=3,2 мР/ч.

    2.3. Для сравнения радиоактивных источников по ионизирующему действию их у-излучения часто используют внесистемную величину - гамма-эквивалент.

    Гамма-экивалент источника М (или т Ra) - это ус­ловная масса точечного источника 226 Ra, создающего на данном расстоянии такую же мощность экспозиционной до­зы, как и данный источник [б]. Специальные единицы гам­ма-эквивалента: кг-экв Ra, г-экв Ra, мг-экв Ra.

    Миллиграм-эквивалент радия (1 мг-экв Ra) - это гамма-эквивалент радиоактивного источника, Y-излучение которого при тождественных условиях измере­ния создает такую же мощность экспозиционной дозы, что и γ-излучение 1 мг Ra при платиновом фильтре толщиной 0,5 мм.

    Установлено, что точечный источник радия массой 1 мг в равновесии с продуктами распада, заключенный в пла­тиновую оболочку толщиной 0,5 мм, создает на расстоянии 1 см мощность экспозиционной дозы 8,4 Р/ч. Следователь­но, такую же мощность дозы создает 1 мг-экв Ra любого радионуклида на расстоянии 1 см.

    Поскольку величина М численно равна отношению мощ­ностей экспозиционных доз от данного источника я от 1 мг Ra на одном и том же расстоянии, то применяя формулу (3) для r =1см, получим

    М=АГ/8,4, (4)

    где М - гамма-эквивалент источника (мг-экв Ra),

    А - активность (мКи),

    Г - ионизационная гамма-постоянная [Р·см 2 /(ч·мКи)].

    Пример 3 . Активность источника 137 Cs равна 10 мКи. Найти гамма-эквивалент источника М. Из табл. 1.4 Г = 3,26 Р·см 2 /(ч·мКи). По (1.19) М= 10-3,26: 8,4 = 3,88 мг-экв Ra.

    И, наоборот, если известен гамма-эквивалент источника, то из формулы (3) можно найти активность А данного радионуклида.

    Объединяя формулы (2) и (3), получаем соотно­шение между мощностью экспозиционной дозы и гамма-эк­вивалентом точечного источника:

    где р экс выражается вР/ч, М - в мг-экв Ra, г - в см.

    Умножив величину р экс, рассчитанную по формуле (5), на энергетический эквивалент рентгена 8,73 · 10 -3 Гр/Р, получим мощность поглощенной дозы от источника излучения в воздухе в условиях электронного равновесия, р (Гр/ч).

    Пример 4 . Гамма-эквивалент точечного источника М =1 г-эквRa = 10 3 мг-экв Ra. Найти мощность экспозици­онной и поглощенной дозы в воздухе на расстоянии г = = 100 см от источника. По (5) р экс = 8,4-10 3: 10 4 = = 0,84 Р/ч. Мощность поглощенной дозы в воздухе при со­блюдении электронного равновесия р = 0,84 · 8,73· 10 -3 = 7,3 · 10 -3 Гр/ч = 7,3 мГр/ч.

    Итак, мощность экспозиционной дозы р экс от точечного γ -источника находят по формулам (2) или (5). Мощ­ность поглощенной дозы в воздухе р определяют либо по формуле (1), либо умножая р экс на η.

    2.4. На основании (1.11) между мощностью поглощен­ной дозы γ -излучения в биологической ткани р тк и в воз­духе р в имеется связь:

    Для γ-излучения широком диапазоне энергии 0,1 - 3 МэВ отношение коэффициентов μ ат равно 1,09-1,11 (см. табл. 1.3) и, следовательно, с достаточной точностью мож­но принять р тк ≈1,1 р в.

    Мощность эквивалентной дозы ^""Излучения в ткани по­лучим, имея в виду, что коэффициент качества /с=1. Для указанного выше диапазона энергии γ-фотонов

    р экс = Р тк ·к=1,1· р в, (6)

    где р в выражено в Гр/с, р экв - в Зв/с.

    Провести измерение радиоактивного излучения может любой человек, приборы сегодня легко найти в продаже.

    Какова безвредная и смертельная доза радиации для человека и что нужно знать, чтобы правильно оценить опасность?

    Рассмотрим ниже.

    Что имеют в виду под словами «естественный радиационный фон»?

    Это радиация, создаваемая солнечным, космическим излучением, а также из природных источников. Она воздействует на живые организмы непрерывно.

    Биологические объекты, предположительно, к нему адаптированы. К ней не относятся скачки радиации, возникающие из-за деятельности, осуществляемой на планете людьми.

    Когда говорят безопасная доза радиации, имеют в виду именно естественный фон. В какой бы зоне человек ни находился, он получает в среднем 2400 мкЗв/год из воздуха, космоса, земли, продуктов питания.

    Внимание:

    1. Естественный фон – 4-15 мкР/час. На территории бывшего Союза уровень радиации колеблется от 5 до 25 мкР/ч.
    2. Допустимый фон – 16-60 мкР/час.

    Космическое излучение неравномерно охватывает земной шар, нормальная интенсивность на полюсах – выше (магнитное поле земли на экваторе сильнее отклоняет заряженные частицы). А также допустимый уровень зависит от высоты над уровнем моря ( солнечного излучения на высоте 10 км над уровнем моря – 0,2 мбэр/час, на высоте 20 км – 1,6).

    Определённое количество получает человек при авиаперелетах: при длительности 7-8 часов на высоте 8 км на турбовинтовом самолете со скоростью ниже скорости звука составит 50 мкЗв.

    Внимание: влияние радиоактивного излучения на живые организмы полностью еще не изучено. Малые дозы не вызывают явных, доступных для наблюдения и изучения симптомов, хотя, вероятно, оказывают отложенный, системный эффект.

    Вопрос влияния небольших количеств является спорным, одни специалисты утверждают, что к естественному фону человек адаптирован, другие считают, что абсолютно безопасным нельзя считать ни один предел, в том числе нормальный радиационный фон.

    Виды радиационного фона

    Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.

    Виды фона:

    1. Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
    2. Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
    3. Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.

    Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.

    Как измеряют

    Измерять могут либо на местности, либо – если измерение проводится с медицинскими целями — в тканях организма.

    Измеряют дозиметрами, которые через несколько минут показывают мощность различных видов излучения (бета и гамма), а также поглощаемую дозу в час. Альфа-лучи бытовые приборы не улавливают.

    Потребуется профессиональный, при измерении необходимо, чтобы прибор находился рядом с источником (сложно, если нужно измерить уровень излучения из земли, на которой уже построено строение). Для определения количества радона используют бытовые радиометры радона.

    Единицы измерения

    Часто можно встретить «радиационный фон в норме составляет 0,5 микрозиверт/час», «норма – до 50 микрорентген в час». Почему единицы измерения разные и как они соотносятся друг с другом. Значение часто может совпадать, например, 1 Зиверт = 1 Грей. Но у многих единиц разное смысловое наполнение.

    Всего существует 5 главных единиц:

    1. Рентен – единица является внесистемной. 1 Р = 1 БЭР, 1 Р примерно равен 0,0098 Зв.
    2. БЭР – это устаревшая мера измерения того же самого, доза, воздействующая на живые организмы как рентгеновские или гамма-лучи мощностью 1 Р. 1 БЭР = 0,01 Зв.
    3. Грей – поглощенная. 1 Грей соответствует 1 Джоулю энергии излучения на массу 1 кг. 1 Гр = 100 Рад = 1 Дж/кг.
    4. Рад – внесистемная единица. Также показывает дозу поглощенной радиации на 1 кг. 1 рад – это 0,01 Дж на 1 кг (1 рад = 0,01 Гр).
    5. Зиверт – эквивалентная. 1 Зв, составляющий 1Гр равен 1 Дж/1 кг или 100 БЭР.

    Для примера: 10 мЗв (миллизивертов) = 0,01 Зв = 0,01 Гр = 1 Рад = 1 БЭР = 1 Р.

    В системе СИ прописаны Грей, Зиверт.

    Существует ли вообще безопасная доза?

    Порога безопасности не бывает, это было установлено ученым Р. Зивертом еще в 1950 году. Конкретные цифры могут описать диапазон, предугадать их воздействие возможно только ориентировочно. Даже малая, допустимая доза может вызывать соматические или генетические изменения.

    Сложность в том, что увидеть повреждения сразу возможно не всегда, они проявляются некоторое время спустя.

    Все это затрудняет исследование вопроса и вынуждает ученых придерживаться осторожных, приблизительных оценок. Именно поэтому безопасный уровень облучения для человека – это диапазон значений.

    Кем устанавливаются нормы

    Вопросами нормирования и контроля в РФ занимаются специалисты Госкомсанэпиднадзора. В нормах СанПиНа учтены рекомендации международных организаций.

    Документы:

    1. НРБ-99. Это основной документ. Прописаны нормативы отдельно для гражданского населения и работников, чей труд предполагает контакты с источниками радиации.
    2. ОСПОР-99.

    Поглощенная доза

    Она показывает, какое количество радионуклидов было поглощено организмом.

    Допустимые дозы облучения согласно НРБ-99:

    1. За год – до 1 мЗв, что составляет 0,57 мкЗв/ч (57 микрорентген/час). За любые пять лет подряд – не более 5 мЗв. В год — не более 5 мЗв. Если человек получил дозу облучения за год 4 мЗв, за прочие четыре года должно быть не более 1 мЗв.
    2. За 70 лет (берется как средняя продолжительность всей жизни) – 70 мЗв.

    Обратите внимание: 0,57 мкЗв/ч – это верхнее значение, считается, что безопасно для здоровья – в 2 раза меньше. Оптимально: до 0,2 мЗв/час (20 микрорентген/час) – именно на эту цифру и стоит ориентироваться.

    Внимание: эти нормы радиационного фона не учитывают естественный уровень, который колеблется в зависимости от местности. Порог для жителей равнин будет ниже.

    Это пределы для гражданского населения. Для профессионалов они в 10 раз выше: допустимо 20 мЗв/год за 5 лет подряд, при этом необходимо, чтобы в один год выходило не более 50.

    Допустимая, для человека зависит и от длительности облучения: без вреда для здоровья можно провести несколько часов при внешнем облучении 10 мкЗв (1 миллирентген/час), 10-20 минут – при нескольких миллирентген. Выполняя рентген грудной клетки пациент получает 0,5 мЗв, что составляет половину годовой нормы.

    Нормы согласно СанПин

    Поскольку значительная часть радиации поступает с продуктами питания, питьевой водой и из воздуха, СанПиНом введены нормы, которые позволят оценить эти источники:

    1. Сколько для помещений? Безопасное количество гамма-лучей – 0,25-0,4 мкЗв/час (эта цифра включает естественный фон для конкретной местности), радон и торон в совокупности – не более 200 Бк/куб.м. в год.
    2. В питьевой воде – сумма всех радионуклидов не больше 2,2 Бк/кг. Радона – не более 60 Бк/час.
    3. Для продуктов норма радиации прописана детально, по каждому виду отдельно.

    Если дозы в квартире превышают указанные в п. 1, здание считается опасным для жизни и переквалифицируется из жилого в нежилое, либо предназначаются под снос.

    Обязательно оценивается зараженность стройматериалов: уран, торий, калий в сумме должны составлять не более 370 Бк/кг. Оценивается и участок под строительство (промышленное, индивидуальное): гамма-лучи у земли – не больше 0,3 мкЗв/ч, радон – не больше 80 мБк/кв.м*с.

    Что делать, если радиоактивность питьевой воды выше указанной нормы (2,2 Бк/кг)?

    Такая вода еще раз проходит оценку на содержание конкретных радионуклидов отдельно по каждому виду.

    Интересно: иногда можно услышать, что вредно употреблять в пищу бананы или бразильские орехи. Орехи действительно содержат некоторое количество радона, поскольку корни деревьев, на которых они растут, уходят крайне глубоко в почву, отчего и поглощают естественный, присущий недрам фон.

    Важно: многие продукты естественного происхождения содержат радиоактивные изотопы. В среднем норма допустимой радиации, получаемой с пищей – 40 миллибэров/год (10% годовой дозы). Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием.

    Смертельная доза

    Какая доза будет смертельной?

    В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.

    Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.

    Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.

    Существуют такие цифры:

    1. Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
    2. Угроза для жизни – дозировка более 3000 мЗв.
    3. Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
    4. Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.

    Однократное облучение приведет к:

    • 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
    • 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
    • 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
    • 10-80 Зв – кома, смерть через 5-30 мин.
    • От 80 Зв – смерть мгновенно.

    Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.

    Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.

    Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.

    1

    1 ФГАОУ ВПО «Южный федеральный университет»

    Проведена оценка мощности эквивалентной дозы гамма-излучения природных и урбанизированных территорий Ростовской области, Краснодарского края и республики Адыгея. Представленные результаты в целом соответствуют среднемировым значениям гамма-фона. В отдельных районах были выявлены отклонения от типичных значений. Приведено объяснение полученных результатов для природных и урбанизированных территорий. В районах проведения исследований на территории республики Адыгея были обнаружены аномалии, в которых измеренные значения сильно отличались от средних показателей. Оценены годовые значения эквивалентной дозы для исследованных территорий. На основании полученных сведений был сделан вывод о необходимости дальнейших радиоэкологических наблюдений в данном регионе. Подчеркнута важность работы по выявлению радиоактивных аномалий с целью предотвращения получения излишней дозовой нагрузки населением.

    гамма-излучение

    эквивалентная доза

    природные территории

    промышленные территории

    1. Джамилова С.М. Оценка характеристик гамма-поля территорий городов и поселков Акмолинской области // Вестник Алтайского государственного аграрного университета. – 2011. – № 9 (83).– С. 51–54.

    2. Давыдов М.Г. Радиоэкология: учебник для вузов. / М.Г. Давыдов, Е.А. Бураева, Л.В. Зорина, В.С. Малышевский, В.В. Стасов. – Ростов-н/Д.: Феникс, 2013. – 635 с.

    3. СанПин 2.6.1.2523-09 Нормы радиационной безопасности (НРБ-99/2009). Утверждены и введены в действие постановлением Главного государственного санитарного врача Российской Федерации Г.Г. Онищенко от 7 июля 2009 г № 47 с 01 сентября 2009 г.

    4. Chernyago B.P. Current radiation environment in the Central Ecological Zone of the Baikal Natural Territory / B.P. Chernyago, A.I. Nepomnyashchikh, V.I. Medvedev // Russian Geology and Geophysics. – 2012. – Vol. 53. – P. 926–935.

    5. Chougankar M.P. Profiles of doses to population living in the high background radiation areas in Kerala / M.P. Chougankar, K.P. Eappen, T.V. Ramachandran // J. Environ. Radioact. – 2003. – № 71. – P. 275–295.

    6. Fasasi M.K. Natural radioactivity of the tar-sand deposits of Ondo State, Southwest Nigeria / M.K. Fasasi, A.A. Oyawale, C.E. Mokobia, P. Tchosossa, T.R. Ajayi, F.A. Balogun // Nucl. Instrum. and Methods. – 2003. – № 505. – P. 449–453.

    7. Gupta M. Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. / M. Gupta, A.K. Mahur, R. Varshney, R.G. Sonkawade, K.D. Verma, R. Prasad. // Radiation Measurements. – 2013. Vol. 50. – P. 160–165.

    8. Hewamanna R. Natural radioactivity and gamma dose from Sri Lankan clay bricks used in building construction. / R. Hewamanna, C.S. Sumithrarachchi, P. Mahawatte, H.L.C. Nanayakkara, H.C. Ratnayake // Appl. Rad. Isotopes. – 2001. – Vol. 54. – P. 365–369.

    9. Isinkaye O.M. Radiometric assessment of natural radioactivity levels of bituminous soil in Agbabu, southwest Nigeria // Radiation Measurements. – 2008. – Vol. 43. – P. 125–128.

    10. Ravisankar R. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry / R. Ravisankar, K. Vanasundari, A. Chandrasekaran, A. Rajalakshmi, M. Suganya, P. Vijayagopal, V. Meenakshisundaram // Appl. Rad. and Isotopes. – 2012. – Vol. 70. – P. 699–704.

    11. Sabyasachi P. Detection of low level gaseous releases and dose evaluation from continuous gamma dose measurements using a wavelet transformation technique / P. Sabyasachi, D.D. Rao, P.K. Sarkar // Appl. Rad. and Isotopes. – 2012. – Vol. 70. – P. 2569–2580.

    12. Shweikani R. Natural radiation background in the ancient city of Palmyra. / R. Shweikani, M.S. Al-Masri, M. Hushari, G. Raja, M. Aissa, R. Al-Hent // Radiation Measurements. – 2012. –Vol. 47. – P. 557–560.

    13. Song G. Natural radioactivity levels in topsoil from the Pearl River Delta Zone, Guangdong, China / G. Song, D. Chen, Z. Tang, Z. Zhang, W. Xie. // J. of Env. Radioactivity. – 2012. – Vol. 103. – P. 48–53.

    Изучению радиоактивности природных и урбанизированных территорий посвящено множество публикаций. В качестве основного критерия оценки загрязнения территории используется мощность эквивалентной дозы гамма-излучения (МЭД) . В зависимости от территориальных особенностей значения естественного гамма фона могут меняться в достаточно широких пределах. Значительные вариации МЭД связаны как с особенностями геологического и тектонического строения регионов, так и с наличием техногенного влияния - разработкой месторождений полезных ископаемых, выбросами в результате ядерных инцидентов, внесением удобрений и др. .

    В большинстве исследуемых природных регионов мира гамма-фон варьируется в пределах 0,2-0,4 мкЗв/ч . В то же время существуют зоны с аномально высокими значениями МЭД, например, в Национальном парке Агбабу (юго-западная часть Нигерии) значения фона варьируются от 10 до 30 мкЗв/ч при среднем его значении 20 мкЗв/ч . На урбанизированных территориях гамма-фон также в целом составляет от 0,03-0,25 мкЗв/ч , при среднемировом значении 0,1 мкЗв/ч .

    В целом достаточно широкие значения МЭД различных регионов и наличие радиоактивных аномалий на отдельных участках делают актуальной проблему оценки радиоактивности объектов и территорий. Подобные исследования позволяют определить естественный гамма-фон изучаемых районов, оценить дозы облучения населения от природных источников гамма-излучения и выявить непригодные для деятельности человека территории.

    Материалы и методы их исследования

    В качестве объектов исследования был выбран ряд участков, находящихся в Ростовской области, Краснодарском крае и Республике Адыгея.

    В Ростовской области оценка мощности эквивалентной дозы гамма-излучения проводилась в городах: Ростов-на-Дону, Новочеркасск, Таганрог, а также в ст. Старочеркасской. В качестве природных территорий Ростовской области в данной работе были выбраны целинные и залежные участки в Орловском, Аксайском, Цимлянском, Дубовском и Волгодонском районах, включая 30-километровую зону наблюдения Ростовской АЭС. Ландшафт Ростовской области представлен степями и пойменными участками реки Дон, почвы которых сформированы преимущественно на известняках, желтых глинах и аллювиальных отложениях. В данном регионе сильно развиты промышленность, производство, сельское хозяйство и атомная энергетика (Ростовская атомная электростанция).

    В Краснодарском крае наблюдения на природных участках проводились в Кущевском районе. Урбанизированные территории Краснодарского края представлены в основном селами, расположенными в предгорной части Главного Кавказского хребта вдоль побережья Черного моря (Вардане, Верхнениколаевское, Высокое и др.). Краснодарский край делится рекой Кубань на две части: северную - равнинную (2/3 территории), расположенную на Кубано-Приазовской низменности, и южную - предгорную и горную (1/3 территории), расположенную в западной высокогорной части Большого Кавказа. Ведущее место в структуре промышленности принадлежит перерабатывающим производствам и пищевой отрасли. Достаточно развиты электроэнергетика, топливная отрасль, машиностроение и металлообработка, туризм и курортное дело. Доля химической, лесной и легкой промышленности незначительна.

    Территорию Республики Адыгея можно условно разделить на северную часть, которая представлена равнинами и поймами рек, и южную, которая находится в предгорьях и горах Главного Кавказского хребта. Около 40 % территории занимают широколиственные леса. Оценка мощности эквивалентной дозы гамма-излучения проводилась в г. Майкоп и ряде населенных пунктов Майкопского района, а также на луговых и лесных участках предгорий. Урбанизированные территории представлены населенными пунктами: г. Майкоп, п. Каменомостский, с. Победа, с. Никель, ст. Даховская, ст. Абадзехская, с. Севастопольское и с. Новосвободное и месторождениями полезных ископаемых Майкопского района. В основном населенные пункты данной территории имеют малую численность населения и невысокую плотность застройки.

    Мощность эквивалентной дозы гамма-излучения измеряли пешеходной гамма-съемкой с помощью дозиметров-радиометров ДРБП-03, СРП-88н и ДКС-96 на высоте 1 м от поверхности почвенного покрова. Погрешность оценки МЭД не превышает 15 %.

    Результаты исследования и их обсуждение

    Мощность эквивалентной дозы гамма-излучения по районам Ростовской области и Краснодарского края варьируется в пределах от 0,05 до 0,29 мкЗв/ч, при среднем значении мощности эквивалентной дозы 0,15 мкЗв/ч (табл. 1, рисунок 1, а-г). На большинстве природных территорий данных регионов гамма-фон находится в пределах 0,08-0,20 мкЗв/ч (рисунок 1, б, г), что не превышает значений МЭД, установленных в (0,2 мкЗв/ч) и соответствует среднемировому гамма-фону (0,1 мкЗв/ч). Для г. Ростова-на-Дону мощность эквивалентной дозы гамма-излучения соответствует данным по Ростовской области (табл. 1).

    Для городских (урбанизированных) территорий Ростовской области (рисунок 1, а) распределение мощности эквивалентной дозы гамма-излучения неоднородное. Имеют место как районы с гамма-фоном на уровне 0,09-0,15 мкЗв/ч, так и участки с фоном в пределах 0,22-0,29 мкЗв/ч. Подобное распределение мощности эквивалентной дозы гамма-излучения на урбанизированных территориях связано с неоднородностью застройки, чередованием парковых зон и загруженных автомобильных магистралей, а также с использованием различных строительных материалов при возведении зданий и объектов.

    Республика Адыгея имеет крайне неоднородный и сложный рельеф с горными и равнинными участками. Радиоактивность данных территорий в значительной мере зависит от глубины залегания материнских пород, наличия проявлений урана и зон тектонических разломов .

    На природных территориях измерения проводились в ущельях рек Белая и Сюк, в смешанных лесах, прилегающих к пойме реки Белая, и на луговых территориях, в том числе на плато Лаго-Наки. Радиационный фон на данных территориях также варьируется в значительных пределах (табл. 2). Дополнительные дозовые нагрузки могут вносить эманации радона и выходы гранитов на поверхность Земли. Коренные породы залегают неглубоко - от 20 см до 1 м и вследствие оползней и селей могут быть оголены.

    На территории Республики Адыгея имеют место радиоактивные аномалии с повышенным гамма-фоном. Они могут быть как естественного происхождения, например, участки с проявлениями урана, так и искусственного, например, штольни и отвалы, а также некоторые источники водоснабжения, которые ведут забор воды из водоносных слоев, сформированных на радиоактивных пластах. В табл. 2 приведены сведения для аномалий, которые были обнаружены как на территориях населенных пунктов, так и на природных участках в экспедициях 2003 и 2010-2012 гг. Разброс значений мощности эквивалентной дозы крайне велик. Сами аномалии распределены неравномерно.

    а б в

    г д е

    Диаграмма распределения мощности эквивалентной дозы гамма-излучения урбанизированных территорий Ростовской области (а), природных территорий Ростовской области (б), урбанизированных территорий Краснодарского края (в), природных территорий Краснодарского края (г), урбанизированных территорий Республики Адыгея (д), природных территорий Республики Адыгея (е)

    Распределение мощности эквивалентной дозы варьируется в широких пределах (табл. 2, рисунок д-е). Источниками высоких значений мощности эквивалентной дозы урбанизированных районов могут служить объекты питьевого водоснабжения (колодцы, колонки, скважины), строительные материалы, а также эманации радона. 222Rn хорошо растворим в воде, обладает высокой скоростью эманации с поверхности земли и может свободно выходить на поверхность по трещинам и разломам горных пород.

    Выявленные в аномалиях значения МЭД свыше 1 мкЗв/ч делают их потенциально опасными для здоровья человека. Измеренные величины свидетельствуют о высокой вероятности превышения предельно допустимых значений законодательно нормируемых характеристик установленных в для радионуклидов. Длительное нахождение в таком месте может привести к получению заметной дозы облучения. Отдельную опасность представляет случайное попадание концентрированных количеств радионуклидов из областей аномалий в организм человека. Поиск, локализация и изоляция таких участков является важной задачей. Пешеходная гамма-съемка хоть и дает хорошее разрешение, но не в силах охватить большие территории, на которых могут присутствовать радиоактивные аномалии, как например, на территории Республики Адыгея. Кроме того необходимо проводить учет аномальных участков и устанавливать в местах их нахождения предупреждающие знаки.

    Таблица 1

    Мощность эквивалентной дозы гамма-излучения

    Таблица 2

    Гамма-фон территорий Республики Адыгея

    Также в данной работе оценивалась годовая эффективная доза для населения . Расчет годовой эффективной дозы проводился, исходя из принципа, что фон в течение года стабилен и человек облучается равномерно.

    Таблица 3

    Оценка годовой эффективной дозы для урбанизированных и природных территорий Ростовской области

    Территории

    Минимальное значение, мЗв/г

    Максимальное значение, мЗв/г

    Среднее значение, мЗв/г

    Стандартное отклонение

    Ростовская область

    Урбанизированные

    Природные

    Краснодарский край

    Урбанизированные

    Природные

    Республика Адыгея

    Урбанизированные

    Природные

    Аномалии

    В целом на урбанизированных и природных территориях население получает примерно одинаковые дозы (табл. 3). Однако годовая эффективная доза, получаемая населением на урбанизированных и природных территориях горных районов, может значительно разниться. Аномальные участки могут вносить значительный вклад в индивидуальную дозовую нагрузку человека как за счет внутреннего, так и внешнего облучения.

    Допустимые значения для эффективной дозы в условиях воздействия естественных радионуклидов, согласно , не устанавливаются. Но существуют ограничения по МЭД на участках застройки, на которых её значение не должно превышать мощности дозы на открытой местности более чем на 0,2 мкЗв/ч . Установлены нормы качества питьевой воды по радиационной безопасности в условиях воздействия как техногенных, так и природных радионуклидов .

    Отметим, что в случае радиационной аварии, согласно , территории со значениями годовой эффективной дозы от 1 до 5 мЗв/г относятся к зонам радиационного контроля. При этом большинство исследуемых районов Северного Кавказа (табл. 3) относятся к территориям, в которых годовая эффективная доза гамма-излучения населения, обусловленная исключительно естественными радионуклидами также может составлять от 1 до 5 и даже более мЗв/г. Поэтому эти районы требуют организации радиоэкологического мониторинга.

    Оценены мощности эквивалентных доз гамма-излучения природных и урбанизированных территорий (табл. 1, 2). Данные хорошо согласуются друг с другом и со среднемировыми значениями в интервале 0,1 мкЗв/ч.

    На территории Республики Адыгея присутствуют радиоактивные аномалии. Определена годовая эффективная доза облучения населения природных и городских территорий для фоновых территорий и районов с радиоактивными аномалиями (табл. 3). Все исследованные участки относятся к зонам вмешательства, для которых требуется дозиметрический контроль объектов и территорий.

    Работа выполнена при финансовой поддержке Минобрнауки России в рамках Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» (№ 14.А18.21.0633).

    Рецензенты:

    Вардуни Т.В., д.п.н., к.б.н., профессор, заведующая отделом экологических инноваций Научно-исследовательского института биологии, ФГАОУ ВПО «Южный федеральный университет», г. Ростов-на-Дону;

    Симонович Е.И., д.б.н., старший научный сотрудник Научно-исследовательского института биологии, ФГАОУ ВПО «Южный федеральный университет», г. Ростов-на-Дону.

    Работа поступила в редакцию 18.09.2013.

    Библиографическая ссылка

    Бураева Е.А., Малышевский В.С., Нефедов В.С., Тимченко А.А., Горлачев И.А., Семин Л.В., Шиманская Е.И., Триболина А.Н., Кубрин С.П., Гуглев К.А., Толпыгин И.Е., Мартыненко С.В. МОЩНОСТЬ ЭКВИВАЛЕНТНОЙ ДОЗЫ ГАММА-ИЗЛУЧЕНИЯ ПРИРОДНЫХ И УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЙ СЕВЕРНОГО КАВКАЗА // Фундаментальные исследования. – 2013. – № 10-5. – С. 1073-1077;
    URL: http://fundamental-research.ru/ru/article/view?id=32455 (дата обращения: 24.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

    После развала СССР с методиками измерений начался кавардак - контроль безопасности почему-то стал сферой услуг, который должен самоокупаться и выживать в условиях рынка. Методики стали чьей-то частной интеллектуальной собственностью. Многообразие форм проведения измерений и интерпретации их результатов создали почву для манипулирования общественным мнением, взращиванию недоверия к оценкам профессиональных специалистов радиологов. Хорошо, что не везде рыночные механизмы разрушили советский опыт единообразия, реалистичной простоты и прозрачности методического обеспечения. К примеру на сайте Института радиологии в Белоруссии размещена официальная методика МВИ.МН 2513-2006 по проведению радиационного контроля территорий, предприятий, рабочих мест, лесных и сельскохозяйственных угодий, зданий, сооружений, техники, транспорта, металлолома и т.д. Что называется, пользуйтесь люди добрые! Уточняйте: каким образом проводили измерения, какие прогнозируемые дозы облучения, какая компетентность и ответственность человека, вещающего об очередной радиационной страшилке.

    http://www.rir.by/metodiki.html
    Согласно МВИ.МН 2513-2006:
    > При обследовании территории измерение мощности эквивалентной дозы гамма-излучения (МЭД) проводят на высоте 1 м от поверхности. (При проведении преддезактивационного обследования для участков с повышенным радиационным фоном дополнительно проводят измерения МЭД на высоте 2-3 см от поверхности.)
    > При обследовании зданий и сооружений измеряют МЭД в каждом помещении (комнате) в пяти точках на высоте 1 м над уровнем пола (четыре измерения по углам помещения и одно в центре).
    > Обследование оборудования, техники, транспортных средств включает измерение МЭД в характерных точках (кабина водителя, салон автомобиля, рабочее место обслуживающего персонала и т.д.).
    > Обследование металлолома производят вблизи поверхности (на расстоянии не более 0,1 м) партии (фрагмента) металлолома (за вычетом величины природного фона).
    > При аттестации рабочих мест специалистов, работающих с источниками ионизирующих излучений, измерения проводятся на высотах 0,1; 0,9 и 1,5 м от поверхности пола.
    > Обследование транспортных контейнеров осуществляют на поверхности и на расстоянии 2 м от контейнера.
    > Измерение МЭД от поверхности защитного блока с источником ионизирующего излучения производится на расстоянии 1 м.

    Результаты измерения МЭД существенно зависят от расстояния до источника (радиационный калькулятор - http://www.radprocalculator.com/Gamma.aspx), а в методике указываются такие, чтобы результаты позволяли достоверно оценивать возможный ущерб для здоровья человека - эффективную дозу радиационного облучения, как меру риска возникновения отдалённых последствий облучения с учетом радиочувствительности различных органов.

    P.S. В дополнение приведу выдержки из МАГАТЭ: в IAEA-TECDOC-1092/R «Руководство по мониторингу при ядерных или радиационных авариях» МАГАТЭ, Вена, 2002
    "А1: Разведка в облаке
    Держать дозиметр внутри машины над сидением при закрытом окне. При регистрации уровней мощности амбиентной дозы в 5 раз выше фона и более уведомить Специалиста-радиолога о вашем местоположении и показаниях прибора.
    Используя соответствующий прибор с открытым (β+γ) и закрытым (γ) окном, провести радиационную разведку, разместив прибор на уровне пояса (примерно 1 м над поверхностью земли) и на уровне земли (примерно 3 см над поверхностью земли) в положении прибора детектором вниз.
    Определить, поднято ли облако над землей, находится ли оно на уровне земли, или прошло над территорией, сравнивая показания прибора с данными таблицы...

    А2: Разведка выпадений на землю
    Перемещаясь (на машине) вперед по каждой дороге по направлению к загрязненной территории, начинать измерения из машины на нижнем диапазоне измерений (закрытое окно детектора), регистрировать участки, где уровень мощности амбиентной дозы в два раза превышает фоновый. Также регистрировать участки, где мощность дозы в 10 раз превышает фоновые значения (примерно 1 мкЗв/час) и участки, на которых мощность дозы увеличивается на 10 мкЗв/час, доходя до 1 мЗв/ч.

    А3: Дозиметрия окружающей среды
    Поместить два дозиметра ТЛД в герметичный пластиковый пакет и крепко закрепить их на стойке или подставке, обратив их по направлению к центру следа облака или источнику. Установить ТЛД на высоте примерно одного метра над землей. Не помещать ТЛД на всходы или в положение контакта с поверхностью земли.

    А4: Мониторинг источника
    При смешанном бета- и гамма-излучении следует измерять мощность дозы с открытым и закрытым окном для бета-излучения. Это даст относительное указание на уровень мощности дозы бета- и гамма-излучения
    Если ожидается присутствие бета- или альфа- излучения, следует располагать прибор вблизи поверхности источника. Необходимо позаботиться о том, чтобы прибор не оказался загрязнен радионуклидами.

    А5: Разведка поверхностного загрязнения
    Для мониторинга альфа-излучения и мягкого бета-излучения расположить зонд близко к поверхности (расстояние от окна зонда до исследуемой поверхности не должно превышать 0.5 см).
    Влажные поверхности могут экранировать альфа-излучение. Необходимо провести повторный мониторинг альфа-излучения на влажных поверхностях после того, как они высохнут, либо отобрать пробы поверхностей для лабораторного анализа.
    Зарегистрировать показания, характеризующие альфа-, бета+гамма, бета- и/или гамма- излучения

    Разведка загрязнения транспортных средств
    Провести общую разведку транспортных средств на предмет бета+гамма-излучения, начиная с решетки радиатора, брызговиков с арками колес, бамперов, и шин …
    Если при внешнем радиационном контроле транспортного средства обнаружено загрязнение выше фонового уровня … провести разведу внутренних поверхностей транспортного средства: сидений, половиков, подлокотников, руля, переключателя передач

    А8: Индивидуальный мониторинг
    А8а: Индивидуальная дозиметрия – внешняя
    прикрепить индивидуальный дозиметр к нагрудному карману под защитной одеждой
    Периодически (в соответствии с заранее согласованным расписанием) проверять показания вашего дозиметра

    А8б: Мониторинг щитовидной железы
    Поместить детектор NaI(Tl) у шеи и проводить измерение между кадыком и перстневидным хрящом (твердый хрящ вблизи гортани на передней поверхности шеи)

    А8в: Индивидуальный мониторинг загрязнения
    Поместить датчик примерно на 1 см над поверхностью тела человека, соблюдая предосторожность, чтобы не дотронуться до него/нее. Начиная с макушки головы, перемещать датчик вниз по одной стороне шеи, вдоль воротника, наружной стороны плеча, предплечья, запястья, руки, внутренней стороны поверхности руки, подмышечной впадины, боковой поверхности тела, ноги, обшлага брюк, обуви. Провести мониторинг внутренней поверхности ног и другой стороны тела, как указано на Рисунке А5. Провести мониторинг передней и задней поверхностей туловища. Обратить особое внимание на ступни, ягодицы, локти, руки и лицо. Датчик следует перемещать со скоростью примерно 5 см в секунду. Любое радиоактивное загрязнение будет выявлено, прежде всего, с помощью звукового индикатора.
    Следует также провести мониторинг всех личных вещей.
    ..."
    http://www-pub.iaea.org/MTCD/Publications/PDF/te_1092R_prn.pdf

    Раньше были сборники методик для общего использования, утвержденные или согласованные с главным санитарным врачем СССР. Такие сборники были в Мин.обороне, ЦГСЭН и гидрометеослужбе. Поделитесь их сканами если у кого есть.

    Мощность экспозиционной дозы, рассчитанной по гамма-излучению - устаревший критерий дозы. Интенсивность потока ионов (собственно, физическая суть радиации) теперь считают иначе. По современным критериям применяют мощность эквивалентной дозы. Ее основа - замер биологических последствий ионизирующего излучения на организм за темпоральный промежуток (час, сутки и т. д.). МЭД считается более адекватным нуждам медицины, нежели более абстрактный замер «гаммы», не учитывающий многих параметров. Современные же требования экологии и радиобезопасности по работе в местах с повышенным излучением намного строже и должны быть направленными на отслеживание и ликвидацию возможных последствий превышения значений ионизирующего излучения.

    Старые методики замеров до 1990 года

    Существенным отличием от МЭД, основой «чернобыльских» нормативов, была экспозиционная доза, считавшая поток фотонов, ионизирующих воздух. Физиками этот процесс отлично исчисляется, однако сведения о мощности дозы не могли точно покрыть требования по медицинским анализам.

    В формуле дозу рассчитывали в качестве электрозаряда ионов, которые образуются тормозящим излучением в сухом воздухе при делении на массу объема воздуха. В физических величинах это ампер в секунду, т. е. обоснование количества энергии, поглощенной объектом под потоком радиации.

    В качестве же хрестоматийной системной единицы используется рентген в секунду. Рентген - устаревшая мера излучения, в наше время используют зиверты. Причина, почему именно с 1990 года совершена реформа - выход новых комплексных методичек по дозиметрам. Тем самым полностью обновлен модельный ряд детекторов и внедрены более современные стандарты радиобезопасности. На основе кумулятивного опыта радиационных аварий были установлены фундаментальные изъяны использования рентгенов в час в качестве единиц измерения:

    • Слишком грубые замеры. «Формально» ионизирующий поток по формуле просчитан корректно. Однако недостаточно раскрыты второстепенные физические явления, показывающие изменения в итоговых масштабах облучения.
    • Нет соотношения с воздействием в биологическом плане: экспозиционная доза в разных условиях плотности ионизации имеет весьма вариативные последствия.
    • Старым методом было нереально проверить накопленное облучение за определенный период, также упускались многие биологические параметры.

    Каковы современные методы, чтобы проверить мощность дозы гамма излучения?

    Современная оценка ионизации базируется на измерении мощности дозы гамма излучения в виде эквивалентной дозы за фиксированный темпоральный промежуток. Именно так исследователи оценивают долгосрочные биологические изменения от ионизирующего излучения. Суммарная мощность складывается из суммы бета-фона, гамма-излучения, рентгеновских лучей, соответственно, принятым поправочным коэффициентам.

    Измеряется мощность зивертами в единицу времени. Один зиверт - гигантская доза (например, шесть зивертов - это летальная лучевая болезнь), поэтому для расчета практики постоянного и временного облучения практикуют миллизиверты.

    Однако даже новейший подход не справляется со всеми факторами, касающимися человеческого метаболизма под ионизирующим облучением. Ткани разной плотности и химического состава, кости, жидкости внутри организма по-разному радиопроницаемы и выводят нуклиды также специфически. Радиобиология сегодня учитывает как направление пучка лучей, так и расположение их внешнего источника, возрастные показатели, метеорологию и так далее.

    Занимается дифференцированной дозиметрией и тем самым помогает определять мощность дозы согласно современным рекомендациям. В компании представлены наиболее чувствительные измерительные приборы, а также опытный персонал, занимающийся постановкой точных диагнозов. Заказать услуги инженеров «Радэк» можно по номеру телефона, указанному на сайте.