Войти
Образовательный портал. Образование
  • Рецепты варенья из кабачков с лимоном, с курагой и в ананасовом соке
  • Как приготовить вкусные куриные сердечки с картофелем в мультиварке Куриные сердечки рецепт в мультиварке с картофелем
  • Сырный суп с курицей и грибами Куриный суп с сыром и грибами
  • Четверка монет таро значение
  • Что такое договор найма служебного жилого помещения?
  • Хлеб по технологии в духовке на дрожжах
  • Как определить категорию молниезащиты здания. Электроэнергетика главное. Поражающие факторы молнии

    Как определить категорию молниезащиты здания. Электроэнергетика главное. Поражающие факторы молнии

    Удар молнии способен привести к разрушению промышленных и жилых сооружений, пожару, взрыву, выходу из строя линий электропередач (ЛЭП), электроустановок и средств информационно - коммуникационных технологий (ИКТ), а также опасен для людей и животных. Особенно опасна эта природная стихия для так называемых критически важных объектов. Поэтому в качестве средств защиты объектов и строений необходим целый комплекс мер, причем как организационного, так и научно-технического характера. Эта совокупность мер и получила название - молниезащита. Она служит для снижения рисков воздействия такого рода катаклизмов на промышленную и гражданскую инфраструктуру.

    От степени пожароопасности (или от риска взрыва) здания или строения зависит уровень тяжести последствий от удара молнии. Дополнительно надо учесть возможность искрений в перекрытиях, которые могут быть вызваны сопутствующими молнии воздействиями. К примеру, на производствах, на которых используется открытый огонь и протекают процессы горения, применяются, как правило, несгораемые конструкции. В таком случае, протекание тока молнии не вызывает большой опасности. А вот если в цехах находятся взрывоопасные вещества, то возникает повышенный риск человеческих жертв и огромных материальных убытков. Для специалиста налицо огромный разброс технологических условий для разного рода зданий, объектов и организаций. И в таком случае, предъявить для всех этих объектов одинаковые требования к молниезащите означает либо вложить лишние финансовые средства в проектирование систем защиты, либо же смириться с неизбежностью больших рисков и ущерба, вызванного негативными последствиями ударов молнии. При проектировании систем молниезащиты необходимо учесть и метеорологическую обстановку в данном регионе. Например, статистика гроз в Норильске будет отличаться от статистики гроз в Сочи. Поэтому международные нормативные документы предписывают проектировщикам произвести расчет рисков и потенциального ущерба от воздействия молний. В результате этих причин, здания и строения стали подразделять на классы (уровни защиты), которые различаются по степени тяжести возможного ущерба от поражения молнией. А такой фактор, как активность гроз и молний в соответствующей географической точке, где расположен защищаемый объект, определяет категорию молниезащиты.

    Нормативная правовая и технологическая база классификации защищаемых объектов

    Международная практика по созданию правовых нормативных документов в области молниезащиты и электробезопасности предусматривает разработку следующих материалов: технические регламенты (ТР), технические кодексы устоявшейся практики (ТКП), международные стандарты (ИСО/МЭК), национальные стандарты (ГОСТ), ведомственные инструкции и руководящие документы (РД).

    В области молниезащиты и электробезопасности объектов промышленного и гражданского назначения наиболее часто используемыми при проектировании, монтаже и сертификации (категорировании) нормативными материалами являются следующие:

    • "Инструкции по молниезащите зданий и сооружений" (РД 34.21.122-87);
    • "Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций" (СО-153-34.21.122-2003);
    • ГОСТ Р МЭК 62305-1-2010. Менеджмент риска. Защита от молнии. Часть 1. Общие принципы;
    • ГОСТ Р МЭК 62305-2-2010. Менеджмент риска. Защита от молнии. Часть 2. Оценка риска;
    • МЭК 62305-3-2010. Защита от атмосферного электричества. Часть 3. Физические повреждения зданий, сооружений и опасность для жизни;
    • МЭК 62305-4:2010 Защита от молнии. Часть 4. Электрические и электронные системы в зданиях (сооружениях);
    • Правила устройства электроустановок (ПУЭ). 7-ое издание (утв. приказом Минэнерго РФ от 8 июля 2002 г. N 204) .

    Классы и уровни молниезащиты строений и объектов промышленных и гражданских объектов

    В соответствие с вышеизложенными обстоятельствами давайте проанализируем выше упомянутые нормативные документы на предмет классификации и категорирования защищаемых объектов.

    "Инструкция по молниезащите зданий и сооружений" (РД 34.21.122-87)

    Является самым старым, в хронологическом плане, нормативным документом времён СССР (в дальнейшем будем коротко называть его РД). Это документ прямого действия, он имел исключительную юридическую силу, и все организации были обязаны его применять вне зависимости от их ведомственной принадлежности. Согласно данной инструкции деление зданий и сооружений их целевому назначению и типу молниезащитных систем проводилось по трём категориям, которые подразделялись ещё на классы взрывоопасных и пожароопасных зон, определённых в ПУЭ, а также по типу зоны защиты, которой приписывается определенная надежность

    — 0,995 для зоны А и 0,95 для зоны Б.

    1. Защита от прямых ударов молнии зданий и сооружений, которые относятся по устройству молниезащиты к I категории (согласно РД), обычно реализуется с помощью отдельно стоящих стержневых или тросовых молниеотводов.

    С помощью таких молниеотводов обеспечивается зона защиты типа А (см. РД, приложение 3). Элементы молниеотводов должны быть удалены от защищаемого объекта, а также от подземных металлических коммуникаций. Можно выбрать естественный или искусственный заземлитель (см. п.1.8. РД).

    Конструкции заземлителей, допустимые для отдельно стоящих молниеотводов:

    1. а) железобетонный подножник (один или несколько), его длина не менее 2 м или же железобетонная свая (может быть несколько), ее длина не менее 5 м;
    2. б) стойка железобетонной опоры (диаметр не менее чем 0,25 м, заглублена в землю не менее чем на 5 м);
    3. в) железобетонный фундамент произвольной формы (площадь поверхности контакта с землей не менее 10 м2);
    4. г) искусственный заземлитель может состоять из 3-х вертикальных электродов и более длиной не менее 3 м, которые объединены горизонтальным электродом, расстояние между этими вертикальными электродами не менее 5 м.

    Защита от заноса высокого потенциала выполняется согласно п.2.2., 1.8. РД.

    1. Защита от прямых ударов молнии зданий и сооружений, которые относятся по устройству молниезащиты к II категории (согласно РД), обычно реализуется таким образом: устанавливаются отдельно стоящие стержневые или тросовые молниеотводы.

    Или же они устанавливаются прямо на защищаемом объекте. Они обеспечивают зону защиты в соответствии с требованиями РД (см. табл. 1, п. 2.6 и приложение 3.) При установке молниеотводов на защищаемом объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть проведено не менее 2-х токоотводов. Когда уклон кровли здания не более 1:8 можно применить молниеприемную сетку. Установка молниеприемников или наложение молниеприемной сетки не обязательно для строений с металлическими фермами, если выполняются условия, при которых в их кровлях используются несгораемые или трудносгораемые утеплители и гидроизоляция.

    На зданиях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля.

    Токоотводы от металлической кровли или молниеприемной сетки прокладываются к заземлителям не реже чем через 25 м по периметру здания.

    При удельном сопротивлении грунта менее 500 Ом*м и площади здания более 250 кв. м. , а также в грунте с удельным сопротивлением от 500 до 1000 Ом*м при площади здания более 900 кв.м. выполняется горизонтальный контур вокруг здания на глубине 0,5 м. В первом случае, если площадь здания менее 250 кв.м., в месте соединения токоотвода приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 метра, а во втором случае при площади менее 900 кв.м. приваривается не менее двух электродов.

    1. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к III категории, должна выполняться одним из способов, указанных в РД (см.п.2.11, соблюдая также п. 2.12. и 2.14. РД), например, с помощью прокладки моолниеприёмной сетки. При прокладке такой сетки в качестве токоотводов используются металлические конструкции зданий.

    Во всех возможных случаях для объектов III категории в качестве заземлителей для защиты от прямых ударов молнии рекомендуется применять железобетонные фундаменты самих зданий. Если же нет такой возможности, то вполне применимы и искусственные заземлители. Искусственный заземлитель обычно изготовлен из двух и более вертикальных электродов длиной не менее 3 м, которые объединены горизонтальным электродом длиной не менее 5 м.

    Если же рекомендовано использовать в качестве молниеприемников сетки или металлической кровли, то по всему периметру здания в земле на глубине не менее 0,5 м прокладывают наружный контур, который изготовлен из горизонтальных электродов. В зданиях, площадь которых более 100 м, наружный контур заземления может быть использован для выравнивания потенциалов внутри здания (п.1.9. РД). Заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки (п.1.7 ПУЭ).

    Для защиты от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям их необходимо на вводе в здание или сооружение присоединить к заземлителю защиты от прямых ударов молний.

    "Инструкция по молниезащите зданий, сооружений и промышленных коммуникаций" (СО 153-34.21.122-2003)

    Далее СО, документ, носящий рекомендательный характер, пришедший на смену РД, но его не отменивший, не внёс определённости в область классификации и категорирования объектов защиты от воздействия атмосферного электричества. Во-первых, он не преемственен с предыдущим нормативным документом - РД, а во-вторых анонсированные справочные и руководящие материалы в качестве приложений к СО так и не вышли. В итоге Ростехнадзор в своём разъяснении о совместном применении РД и СО №10-03-04 / 182 от 01. 12. 2004 разрешил совместное (комбинированное) применение двух инструкций, что окончательно запутало и так не простую ситуацию с правоприменительной базой в области молниезащиты строений и сооружений промышленного и гражданского назначения. Так в чём же особенности этого документа? Во-первых, в отличие, от РД, в котором предусматривалось 3 категории объектов, выделенных по уровню их защищённости от воздействия молнии, в СО вводится уже 4 класса объектов по параметрам молниезащитных систем. Во-вторых, регулятор предлагает ввести классификатор по воздействиям тока молнии. Это сделано, чтобы каким-то образом нормировать средства защиты от прямых ударов молнии. В целом этот нормативный документ приближен к рекомендациям МЭК, но полного соответствия с ними не имеет, а в основном своём предназначении СО определяет надежность защиты для обычных и специальных объектов в соответствии с уровнем защиты, который устанавливается отраслевыми РД для объектов различного типа и назначения.

    ГОСТ Р МЭК 62305-1,2,3,4-2010

    • - серия документов МЭК, возведенных уже в ранг государственных стандартов РФ в части организации систем защиты от молний причем и для промышленных, и для гражданских сооружений. Из рабочей практики нам известно, что обеспечить абсолютную защиту от молнии невозможно. Поэтому технические руководства, которые доступны в настоящей серии стандартов, позволяют разработать эффективные cистемы молниезащиты (МЗ), обеспечивающие существенное понижение рисков (возможного ущерба) от поражения молнией до приемлемого уровня, а остаточные риски перевести в плоскость страховых случаев. С помощью данной серии стандартов стало возможно интегрировать всю совокупность мер защиты в общую систему. Также были выделены целых 2 группы критериев для проектирования и применения мер защиты:
    • комплекс защитных мер, который необходим для снижения уровня повреждения объектов, а также для уменьшения угрозы опасности для жизни персонала, находящегося в здании, образует первую группу (МЭК 62305-3);
    • совокупность мер защиты, которые требуются для уменьшения количества случаев выхода из строя электрических схем, которые расположены в строениях образуют вторую группу (МЭК 62305-4).

    Только приняв во внимание все параметры защищаемого объекта, проектировщик выбирает соответствующие уровни защиты от молнии.

    В данной серии стандартов установлены 4 класса МЗ (I - IV), а уже в соответствие им установлены уровни молниезащиты (см. МЭК 62305-1, табл. 1).

    Любой класс можно описать определёнными параметрами, которые считаются либо зависящими от уровня молниезащиты или независящими:

    Параметры, которые зависят от класса МЗ:

    • параметры, описывающие молнию (см. МЭК 62305-1, табл. 3,4,5);
    • катящаяся сфера (берется ее R), ячейка (берется ее размер), величина угла защиты (см. МЭК 62305-3, п. 5.2.2);
    • расстояния между токоотводами (типичные), расстояния между кольцевыми проводниками (см. МЭК 62305-3,п. 5.3.3);
    • расстояния от места опасного искрения, которые можно считать неопасными (см. МЭК 62305-3, п.6.3);
    • длина заземлителей (берется минимальная величина), (см. МЭК 62305-3, п.5.4.2).

    Параметры, которые не зависят от класса МЗ:

    1. величина уравнивания грозовых потенциалов (см. МЭК 62305-3, п. 6.2);
    2. замеряемая толщина листов из металла (минимальное значение), а также металлических труб, находящихся в молниеприемниках (см. МЭК 62305-3, п.5.2.5);
    3. материалы МЗ, условия применения этих материалов (см. МЭК 62305-3, п.5.5);
    4. параметры молниеприёмников (материал, из которого они сделаны, минимальные размеры, конфигурация). Здесь же рассматриваем токоотводы и заземлители (см. МЭК 62305-3, п.5.6).

    Остановимся более подробно на данном пункте, т.к. его трактовка в разных нормативных документах имеет некоторые отличительные особенности.

    При рассмотрении рассеивания высокочастотного тока молнии в земле и с целью минимизирования любых опасных перенапряжений конфигурация и размеры системы заземления являются важными критериями. Как правило, рекомендуется низкое сопротивление заземления (по возможности менее 10 Ом, измеренное на низкой частоте). Для молниезащиты предпочтительнее использовать встроенный в здание и пригодный для всех целей отдельный заземлитель (например, для молниезащиты, систем электропередачи и связи).

    Системы заземления должны соединяться в соответствии с требованиями МЭК 62305-3, п. 6.2. Используют два основных конструктивных типа (А и В) размещения заземляющих электродов.

    Расположение типа А: Данный тип размещения включает горизонтальные или вертикальные электроды, установленные за пределами защищаемого здания и присоединенные к каждому токоотводу. В расположении типа А общее количество используемых заземляющих электродов должно быть не менее двух.

    Расположение типа В: Данный тип расположения включает либо кольцевой проводник, находящийся за пределами защищаемого здания, соприкасающийся с почвой на 80 % своей полной длины, либо заземляющий электрод в фундаменте. Эти заземляющие электроды также могут быть сетчатыми. Расположение заземления типа B рекомендуется использовать для зданий с электронными системами, т.к. оно позволяет снизить влияние помех и перенапряжений. Параметры заземляющих электродов определены в МЭК 62305-3, п. 5.4.2.2.

    Тем не менее, исходя из общего совокупного анализа действующих нормативных документов, можно построить условную классификацию объектов молниезащиты по уровням МЗ.

    Объект I-го класса МЗ

    Объект: специальный (критически важный), опасный для окружающей среды, жизнедеятельности человека и животных. Тип объекта: химическое и нефтехимическое производство, биохимические и бактериологические концерны, производство взрывчатки, атомные электростанции и др.

    Гарантированная надёжность защиты от прямого удара молнии - 0,98 (для отдельной категории объектов зоны А может устанавливаться более высокий уровень 0,995). Возникающие негативные последствия от удара молнии: пожар, взрыв, выбросы токсичных веществ, повышенная радиация на значительной территории и пр. Крайний случай - экологическая катастрофа с непоправимыми материальными и человеческими жертвами.

    Объект II-го класса МЗ

    Здесь описаны типы специальных объектов, представляющих опасность для непосредственного окружения.

    Тип объекта: нефтепереработка, АЗС, мукомольные, деревообрабатывающие фабрики, производство пластмассовых изделий и пр.

    Гарантированная надёжность защиты от прямого удара молнии - 0,95 (для отдельной категории объектов зоны Б может устанавливаться более высокий уровень).

    Возникающие негативные последствия от удара молнии: пожары, взрывы внутри помещения и на прилегающей территории. Вероятны сопутствующие разрушения стен и перекрытий, а также сильные травмы и даже гибель сотрудников и посетителей. В этом случае фиксируются значительные финансовые потери.

    Объект III-го класса МЗ

    Объект: специальный, критическая инфраструктура.

    Тип объекта: предприятия связи и ИКТ, трубопроводный транспорт, ЛЭП, оборудование централизованного отопления, транспортная инфраструктура и др.

    Гарантированная надёжность защиты от прямого удара молнии - 0,9.

    Возникающие негативные последствия от удара молнии: прерывание связи, частичная или полная потеря управления, перебои с водоснабжением и отоплением, временное снижение качества жизни, материальные потери.

    Объект IV-го класса МЗ

    Объект: общий, промышленные и гражданские сооружения и сопутствующая инфраструктура.

    Тип объекта: жилые дома, производственные сооружения (высотой не более 60 м.), дома и коттеджи в селах, объекты социально-культурного назначения, учреждения образования, больницы, а также музеи, храмы, церкви и др.

    Гарантированная надёжность защиты от прямого удара молнии - 0,8. Возникающие негативные последствия от удара молнии: сильные пожары, разрушения зданий, нарушения работы транспорта, прерывание систем коммуникаций, возможная утрата исторического и культурного наследия. Значительные материальные и финансовые потери. Вероятны человеческие жертвы. Как следует из приведенной системы классификации, любой класс МЗ имеет отличия от другого класса по характеристикам (назначению) объекта и параметрам молниезащиты, а также типом заземляющего устройства, конструкция которого определяется назначением и размещением сооружения.

    Заключение

    Рассмотрев в этом аналитическом обзоре проблемы молниезащиты объектов промышленного и гражданского назначения и соответствующей инфраструктуры, можно констатировать, что вопросы защиты от воздействия атмосферного электричества в плане регулирования и применения правовой нормативной технической базы в РФ определяются достаточно широким спектром действующих нормативных документов, а именно: СО, РД, ГОСТы и пр. Использование сочетания положений этих документов, позволит построить полноценную систему молниезащиты для объектов всех классов и категорий. Можно выделить 2 подхода к проектированию молниезащиты. Первый - построение молниезащиты в соответствии с категориями РД. Второй - обеспечение требуемой надежности защиты, руководствуясь СО и отраслевыми стандартами. Выбор нормативных документов зависит от сферы, в которой производится проектирование и наполненности предметной области внутренними документами. В основном, отраслевые нормативы содержат модернизированные требования СО и РД, так что можно сказать, что эти документы по-прежнему остаются определяющими в силу традиций многолетнего опыта использования. ГОСТы и стандарты МЭК используются как ссылочные, а также к ним прибегают в случае неполноты или отсутствия некоторых параметров МЗ в РД или СО.

    Требуется консультация по организации заземления и молниезащиты для вашего объекта? Обратитесь в

    Молния – источник повышенной опасности

    Не все понимают настоящую опасность ударов молнии. Максимум, что делает человек во время грозы – выключает электроприборы, да и это делает не каждый.

    Молния – это сильнейший разряд скопившегося атмосферного электричества с огромным потенциалом, образующегося в результате трения об воздух капель водяных паров. Заряд молнии достигает сотен тысяч ампер, а напряжение – двух миллионов вольт.

    Электрический разряд воздействует на объект тремя способами:

    • Прямым попаданием молнии, в результате чего предмет резко нагревается и плавится. Это приводит к нарастанию внутреннего напряжения и взрывам. Частым итогом попадания молнии являются разрушения и возгорания.
    • Возникновением магнитного поля в металлических контурах. Наведенный ток приводит к искрообразованию и сильному перегреву конструкций, что очень опасно для промышленных объектов.
    • Ударом высоких потенциалов через внешние и подземные трассы. Занос потенциалов идет наряду с разрядами электричества и вызывает пожары и взрывы.

    Молниезащита – это комплекс мероприятий и оборудования, необходимых для нейтрализации опасного воздействия атмосферных электроразрядов и обеспечивающих безопасность людей, сохранность зданий, сооружений и оборудования от взрывов, разрушений и пожаров.

    Признаком классификации зданий и сооружений является характер необходимых работ по молниезащите. Объекты делятся на три группы:

    І категория – опасные промышленные объекты, в которых попадание молнии может стать причиной пожара, взрыва, больших разрушений и привести к гибели людей (помещения, где ведутся работы с взрывоопасными и легковоспламеняющимися материалами, элекростанции и подстанции). В соответствии с Правилами устройства электроустановок (ПУЭ) эти объекты принадлежат к классу В-І и В-ІІ.

    ІІ категория – взрывоопасные здания и сооружения, в которых горючие и другие вещества хранятся в металлических или специальных емкостях, то есть взрыв не приведет к большим разрушениям и возгораниям (склады топлива, ГСМ, аммиачные холодильники, мукомольные цеха). Согласно ПУЭ такие объекты имеют класс В-Іа, В-Іб, В-ІІа, В-Іг.

    ІІІ категория – объекты, для которых прямое попадание молнии опасно лишь пожарами и разрушениями (жилые дома, детские сады, больницы, школы, трубы котельных и промышленных предприятий). По ПУЭ – класс П-І, П-ІІ, П-ІІІ.

    Ряд зданий, которые не входят ни в одну из групп, считают условно безопасными. Но случаи попадания в них молнии известны.

    Защита промышленных зданий от молнии

    Производственные здания и сооружения промышленных предприятий в зависимости от их назначения, конструкции и географического расположения обеспечиваются молниезащитой. Выбор защитной системы и оборудования выполняется посредством проведения специальных вычислений. Расчету подлежит количество вероятных поражений молнией в год.

    Защита промышленных зданий и сооружений от прямых ударов молнии обеспечивается молниеотводом, который включает в себя:

    1. Молниеприемник, принимающий разряд.
    2. Заземлители, отводящие ток в землю.
    3. Тоководы, необходимые для соединения молниеприемников с заземляющими устройствами.

    При наличии громоотвода, разряд электричества проходит через приемник, обходя защищаемый объект. Действие устройства основывается на свойстве молнии поражать самые высокие конструкции с хорошим заземлением.

    Молниеотводы делят на стержневые и тросовые. Первый вариант используется чаще, тогда как применение тросовых устройств ограничивается длинными и узкими сооружениями или объектами со множеством подземных коммуникаций, мешающих установке стержневых отводов.

    Стержневые устройства могут быть:

    • одиночными (антенны);
    • двойными – с двумя отдельно размещенными стержнями;
    • многократными – с тремя и больше стержными, создающими общую защитную зону.

    Стержневые молниеприемники имеют длину от 200 до 1500 мм, площадь сечения около 100 мм2.

    Тросовые молниеотводы бывают также одиночными, включающими трос и две поддерживающие его опоры, и двойными, состоящими из двух одиночных устройств одинаковой высоты, установленных параллельно.

    Объекты І категории ниже 30 м оснащаются молниеотводами, монтируемыми отдельно или непосредственно на здании, но изолированно от него. Сооружения высотой более 30 м оборудуются устройствами, установленными не изолированно на самом здании.

    Объекты ІІ категории защищают молниеотводами, расположенными на сооружениях. Для сохранности сооружений ІІІ группы используют заземление металлической крыши, которая служит молниеприемником.

    Материал изготовления молниеприемников – сталь. В качестве устройств, принимающих на себя удар молнии, используют различные металлические конструкции: трубы, решетки и т. д., которые находятся выше защищаемого объекта.

    «Зеленые» облигации в настоящее время являются основным финансовым решением частного бизнеса для перехода мира в низкоуглеродное будущее. Тем не менее, в развивающемся мире «зеленый» рынок все еще находится на начальной стадии, что открывает большие возможности для инвесторов.

    Сравнение элегазовых и вакуумных выключателей для среднего напряжения

    Опыт разработки выключателей среднего напряжения, как элегазовых, так и вакуумных, создали достаточное свидетельство того, что ни одна их этих двух технологий, в общем, значительно не превосходит другую. Принятие решения в пользу той или другой технологии стимулируют экономические факторы, предпочтения пользователей, национальные "традиции", компетенция и специальные требования.

    КРУ среднего напряжения и LSС

    Коммутационное оборудование среднего напряжения в металлическом корпусе и категории потери эксплуатационной готовности (LSС) - категории, классификация, примеры.

    Какие факторы повлияют на будущее производителей трансформаторов?

    Независимо от того, производите ли вы или продаете электроэнергию, или осуществляете поставки силовых трансформаторов за пределы страны, вы вынуждены бороться с конкуренцией на глобальном рынке. Существует три основных категории факторов, которые окажут влияние на будущее всех производителей трансформаторов.

    Будущее коммутационного оборудования среднего напряжения

    Умные сети стремятся оптимизировать связи между спросом и предложением электроэнергии. При интеграции большего количества распределенных и возобновляемых источников энергии в одну сеть. Готово ли коммутационное оборудование среднего напряжения к решению этих задач, или необходимо его развивать дальше?

    В поисках замены элегазу

    Элегаз, обладает рядом полезных характеристик, применяется в различных отраслях, в частности, активно используется в секторе электричества высокого напряжения. Однако элегаз обладает и значительным недостатком - это мощный парниковый газ. Он входит в список шести газов, включенных в Киотский протокол.

    Энергетическая отрасль имеет на своих руках очень большую проблему: профессионалы, родившиеся в период с середины 1940-х и до середины 1960-х годов, приближаются к пенсионному возрасту. И встает очень большой вопрос: кто их заменит?

    Преимущества и типы КРУЭ

    Электрическую подстанцию желательно размещать в центре нагрузки. Однако, часто, основным препятствием такого размещения подстанции является требуемое для нее пространство. Эта проблема может быть решена за счет применения технологии КРУЭ.

    Вакуум в качестве среды гашения дуги

    В настоящее время в средних напряжениях технология гашения дуги в вакууме доминирует по отношению к технологиям, использующим воздух, элегаз, или масло. Обычно, вакуумные выключатели более безопасны, и более надежны в ситуациях, когда число нормальных операций и операций, обслуживающих короткие замыкания, очень велико.

    Выбор компании и планирование тепловизионного обследования

    Если для вас идея тепловизионного обследования электрического оборудования является новой, то планирование, поиски исполнителя, и определение преимуществ, которые может дать эта технология, вызывают растерянность.

    Наиболее известные способы изолирования высокого напряжения

    Приводены семь наиболее распространенных и известных материалов, применяемых в качестве высоковольтной изоляции в электрических конструкциях. Для них указываются аспекты, требующие специального внимания.

    Пять технологий увеличения эффективности систем передачи и распределения электроэнергии

    Если обратить внимание на меры, обладающие наивысшим потенциалом в улучшении энергоэффективности, то на первое место неизбежно выходит передача электроэнергии.

    Преодолевая барьеры применения энергии из возобновляемых источников

    Несмотря на определенные достижения в последние годы, энергия из возобновляемых источников составляет весьма скромную часть современных услуг по предоставления энергии по всему миру. Почему это так?

    В Голландию приходят самовосстанавливающиеся сети

    Рост экономики и увеличение численности населения приводят к увеличению спроса на электроэнергию, вместе c жесткими ограничениями на качество и надежность поставок энергии, растут усилия на обеспечение целостности сети. В случае отказа сетей, перед их владельцами стоит задача минимизировать последствия этих отказов, снижая время выхода из строя, и количество отключенных от сети потребителей.

    Оборудование высоковольтных выключателей для каждой компании связано со значительными инвестициями. Когда встает вопрос об их обслуживании или замене, то необходимо рассматривать все возможные варианты.

    Пути разработки безопасных, надежных и эффективных промышленных подстанций

    Рассмотрены основные факторы, которые следует учитывать при разработке электрических подстанций для питания промышленных потребителей. Обращено внимание на некоторые инновационные технологии, которые могут улучшить надежность и эффективность подстанций.

    Для проведения сравнения применения вакуумных выключателей или контакторов с плавкими предохранителями в распределительных сетях напряжения 6... 20 кВ, необходимо понимание основных характеристик каждой из этой технологии выключения.

    Мониторинг передачи электроэнергии в реальном времени

    Спрос на электроэнергию продолжает расти и перед компаниями, передающими электроэнергию, возникает задача роста пропускных мощностей их сетей. Решить ее можно строительством новых и модернизацией старых линий. Но есть еще один способ решения, он заключается в применении датчиков и технологии мониторинга сети.

    Генераторные выключатели переменного тока

    Играя важную роль в защите электростанций, генераторные выключатели дают возможность более гибкой эксплуатации и позволяют находить эффективные решения для сокращения инвестиционных затрат.

    Преимущества постоянного тока в высоковольтных линиях

    Несмотря на большее распространение переменного тока при передаче электрической энергии, в ряде случаев использование постоянного тока высокого напряжения предпочтительнее.

    Материал, способный сделать солнечную энергию «удивительно дешевой»

    Солнечные батареи, изготовленные из давно известного и более дешевого, чем кремний материала, могут генерировать такое же количество электрической энергии, как и используемые сегодня солнечные панели.

    Безопасность и экологичность изоляции распределительного оборудования

    Целью настоящей статьи является освещение потенциальных опасностей для персонала и окружающей среды, связанных с тем же самым оборудованием, но не находящимся под напряжением. Статья концентрируется на коммутационном и распределительном оборудовании на напряжения свыше 1000 В.

    Необходимость обустройства качественных систем молниезащиты жилых и промышленных зданий особенно остро возникла в начале прошлого столетия во времена всеобщей индустриализации и электрификации, актуальна она и в настоящее время. Сегодня ежедневно на планете Земля наблюдается около 44-45 тысяч гроз, которые могут привести к выходу электроприборов из строя, повреждению целостности зданий и построек, пожарам и гибели людей.

    Для создания работоспособных, эффективных и оптимальных для каждого объекта систем разработаны общепризнанные нормативы проектирования и организации молниезащиты. Существуют международные и отечественные стандарты и правила. Кроме того, в России различают отраслевые и корпоративные стандарты (например, Газпрома, МОЭК и т.п.). В основу всех норм, регламентирующих проектирование молниезащиты, положен многолетний опыт человечества по организации электробезопасности жилых домов и промышленных предприятий, а также особенности современных построек

    Российские нормативы в области молниезащиты

    Создание отечественной нормативной базы по проектированию комплекса мер для обеспечения молниезащиты берет начало в 30-х годах минувшего века. Первоначально были разработаны требования и правила для производственных зданий и сооружений, а также линий электропередач. В 50-х годах прошлого столетия эти требования начали использоваться для частных домов. Позже с учетом многолетних наблюдений и исследований электромагнитной обстановки во время удара молнии на территории бывших союзных республик Министерство энергетики СССР ввело Инструкцию по обустройству молниезащиты зданий и сооружений РД 34.21.122-87. Эта инструкция, как наследие, действует до сих пор. Однако она давно устарела, поэтому для создания современных систем громоотводов пользуются международными стандартами, установленными Международной электротехнической комиссией (МЭК) и российскими инструкциями более поздних редакций.

    В России специалисты и сейчас для создания ряда мер молниезащиты ориентируются на требования и нормы, изложенные в советской инструкции РД 34.21.122-87 (скачать в pdf>> ). Данный норматив является первичным документом, на который опираются профессионалы при выборе схемы конструкции громоотводов на этапе проектирования зданий и сооружений. Она дает толкование всех важных терминов и понятий, описывает требования к органзации защиты от молний и к конструкциям громоотводов, а также расчет молниеотводов. Именно она классифицирует здания и позволяет определить необходимый уровень защиты. К недостатком РД 34.21.122-87относят отсутствие описаний нормативов по организации молниезащиты для склада взрывчатых веществ и пороха, а также в ней нет рекомендаций по выбору материалов для заземлений и т.д. Дополнить и обновить положения советского документа попытались в «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» СО-153-34.21.122-2003 (скачать в pdf>> ). Она включает нормы грозозащиты в коммуникациях.

    Седьмая редакция ПУЭ (Правила устройства электроустановок 7-е издание, Главы 2.4, 2.5, 4.2) разработана с учетом всех видов и типов электрического оснащения и агрегатов. В этом издании собраны все базовые требования электробезопасности и заземления, используемые при обустройстве защиты от удара молнией промышленных и бытовых объектов. Подвести российские стандарты к мировым требованиям IEC в декабре 2011 года позволили первая и вторая часть ГОСТа Р МЭК 62305-1-2010 «Защита от молнии» , а также ГОСТ Р 50571-4-44-2011 «2011 Электроустановки низковольтные. Требования по обеспечению безопасности. Защита от скачков напряжения и электромагнитных помех» (действует с 01.07.2012). Этот документ регламентирует основные нормы по организации безопасности низковольтных установок при появлении отклонений напряжения и электромагнитных помех. Этот стандарт не действует на системы распределения электричества населению, на промышленные объекты и на системы для генерирования и выдачи электроэнергии для них.

    Требования к механизмам защиты электрических сетей и электрооборудования при прямом или косвенном влиянии грозовых или иных переходных перегрузок для коммутации к силовым цепям переменного тока (частотой 50 - 60 Гц), постоянного тока и к оснащению с номинальным напряжением до 1000 В (действующее значение) или 1500 В постоянного тока подробно изложены в ГОСТе Р 51992-2011 (МЭК 61643-1-2005) «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний» (с 01.07.2012).

    Принципы подбора, монтирования и координации устройств грозозащиты от импульсных перенапряжений, предназначенных для подсоединения к силовым цепям переменного тока (частотой 50-60 Гц) или постоянного тока и к оборудованию на номинальное напряжение до 1000 В (действующее значение) переменного тока или 1500 В постоянного тока описаны в ГОСТ Р МЭК 61643-12-2011 «Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и использования» (с 01.01.2013).

    Все основные требования при прямом или косвенном воздействии грозовых или прочих переходных перенапряжений к устройствам для защиты телекоммуникационных и сигнализационных сетей с обозначенными напряжениями системы до 1000 В переменного тока и 1500 В постоянного тока регламентируются ГОСТом Р 54986-2012 (МЭК 61643-21: 2009) «Устройства защиты от импульсных перенапряжений низковольтные. Часть 21. УЗИП для систем телекоммуникации и сигнализации (информационных систем). Требования к работоспособности и методы испытаний» (с 01.07.2013).

    Группа стандартов МЭК (IEC) и их связь

    Развитие науки и электротехники не стоит на месте. Наиболее полно, детально и качественно современные мероприятия по грозозащите отображены во всемирных нормативах МЭК «Защита от воздействия молнии МЭК 62305:2010».

    Стандарт «Защита от воздействия молнии МЭК 62305:2010» определяет базовые правила защиты от порчи молнией любых построек, живущих в них животных и людей, разных инженерных коммуникаций и систем и иных конструкций относящихся к ним, кроме железнодорожной системы, автотранспорта, воздушных и водных транспортных средств, подземных трубопроводов повышенного давления и т.п.

    Нормативы МЭК включают стандарт, определяющий общие положения и описывающий потенциально возможные последствия и опасность молний 62305-1. Потребность организации защиты определяется в соответствии с системой расчета риска и с учетом материального эффекта от установки мер защиты от ударов молнии описывает стандарт 62305-2. Третья часть МЭК 62305:2010 посвящена описанию мер безопасности, требуемых для снижения показателей аварий в постройках и сведения к минимуму уровня опасности для жизни и здоровья людей, находящихся внутри. В четвертой части данного стандарта описан комплекс мер для понижения числа отказов электросистем, приборов и устройств внутри зданий.

    Взаимосвязь группы правил МЭК 62305:2010 определяется уровнем опасности поражения молнией объекта и риском возникновения возможных повреждений. При повышенном риске прямого попадания молнии и необходимости обустройства внешней защиты от прямых ее ударов в строения пользуются требованиями стандарта 62305-3:2010. При повышенной опасности поражения электрооборудования и порчи электросетей от вторичного воздействия молнии актуален стандарт 62305-4:2010.

    Сравнение отечественных стандартов и МЭК

    Современные специалисты, занимающиеся вопросами проектировки и создания молниезащиты современных построек любого назначения, отмечают, что требования МЭК гораздо строже в сравнении с инструкцией советских времен и даже более поздними российскими изданиями ГОСТов. Как правило, если российские Инструкции не дают полный объем необходимой информации для правильного и эффективного создания защиты от молний, профессионалы используют признанные в мире стандарты МЭК.

    Наиболее ярким отличием, например инструкции РД 34.21.122-87 от норм IEC при создании внешней защиты является, отсутствие подробного описания организации молниеприемной сети для сложных рельефных крыш, а также отсутствие рекомендаций по рекомендуемым к использованию материалов для заземлений и т.д. При обустройстве внутренней системы защиты стандарты МЭК детально описывают применение разрядников без искровых промежутков для предотвращения пожаров, выхода из строя бытовой техники, промышленного оборудования и внутренних сетей.

    Нормативные требования к молниезащите

    Еще раз коротко самое главное о стандартизации.

    Состав системы молниезащиты по стандартам IEC (МЭК)

    Кратко о том, что входит в состав комплекса мероприятий по защите от молний и гроз по мнению Международной электротехнической комиссии, а также взаимосвязанные решения в области внешней и внутренней молниезащиты.

    Требования к элементам внешней молниезащиты

    Какие испытания проходят элементы молниеприемные системы, соединительные компоненты, проводники, заземляющие электроды? Описание методик проверки, имитирующих воздействие естественных атмосферных условий и воздействие коррозии на компоненты.

    Расчет стоимости

    Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

    Выберете размер... 10 12 14 16 18 20 22

    Наши объекты

      Здание Военторга на Воздвиженке, г. Москва

      Адрес объекта: г. Москва, ул. Воздвиженка, 10.

      Вид работ: Монтаж системы внешней молниезащиты здания.

      Комплектующие: производства компании Dehn+Sohne Gmbh.

      Элементы комплекта: стальной оцинкованный проводник Rd8; хомут-держатель Rd8-10 трубный 17.2 мм с клеммой, СГЦ/V2A; соединитель клеммный Rd8-10, СГЦ; соединитель универсальный Rd8-10 / Rd8-10, СГЦ; молниеприемный стержень Rd16 L=2.000 мм, алюминий; клемма-держатель фальцевая вертикальная, СГЦ; фальцевая клемма Rd8-10, СГЦ; соединитель промежуточный Rd8-10 / Fl30-Rd16, СГЦ; стальной хомут крепления ленты; лента из нержавеющей стали V2A; держатель Rd16 c М8.

      ГТЭС Терешково

      Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

      Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

      Комплектующие:

      Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.


      Солнечногорский завод "ЕВРОПЛАСТ"

      Адрес объекта: Московская обл., Солнечногорский район, дер. Радумля.

      Вид работ: Проектирование системы молниезащиты промышленного здания.

      Комплектующие: производства фирмы OBO Bettermann.

      Выбор системы молниезащиты: Молниезащиту всего здания выполнить по III категории в виде молниеприемной сетки из горячеоцинкованного проводника Rd8 с шагом ячейки 12х12 м. Молниеприемный проводник уложить поверх кровельного покрытия на держатели для мягкой кровли из пластика с бетонным утяжелением. Обеспечить дополнительную защиту оборудования на нижнем уровне кровли установкой многократного стержневого молниеотвода, состоящего из стержневых молниеприемников. В качестве молниеприемника использовать стальной горячеоцинкованный прут Rd16 длиной 2000 мм.

      Московский международный Дом Музыки

      Адрес объекта: г. Москва, Космодамианская наб., д. 52, стр. 8

      Вид работ: монтаж системы обогрева лотка поверхностного водосбора и участков сливов на балконах 2-го и 3-го этажей

      Нагревательный элемент: саморегулирующийся нагревательный кабель Thermon RGS-2-60-PU.

      Производимые работы: Ревизия электрической системы водостоков: замер сопротивления изоляции силовых и нагревательных кабелей; проверка состояния распределительных коробок; проверка работоспособности шкафов управления. Изготовление и монтаж электрической системы обогрева: применялись регуляторы ETR и ETV фирмы OJ, автоматические выключатели и контакторы ABB, кабель нагревательный саморегулирующийся Thermon.

      Адрес объекта: Московская обл., поселок Икша

      Вид работ: Проектирование и монтаж систем внешней молниезащиты, заземления и уравнивания потенциалов.

      Комплектующие: B-S-Technic, Citel.

      Внешняя молниезащита: молниеприемные стержни из меди, медный проводник общей длиной 250 м, кровельные и фасадные держатели, соединительные элементы.

      Внутренняя молниезащита: Разрядник DUT250VG-300/G TNC, производство CITEL GmbH.

      Заземление: стержни заземления из оцинкованной стали Rd20 12 шт. с наконечниками, стальная полоса Fl30 общей длиной 65 м, крестовые соединители.


      Административно-офисное здание, г. Москва.

      Адрес объекта: г. Москва, Борисоглебский переулок.

      Вид работ: изготовление и монтаж системы внешней, внутренней молниезащиты и заземления.

      Комплектующие: DEHN+SOHNE Gmbh, J. Propster.

      Система внешней молниезащиты: комбинированная в виде молниеприемной сетки из медного проводника Rd8 с шагом ячейки 10х10 м и двух стержневых алюминиевых молниеприемников Rd16 длиной 2,5 м; молниеприемный проводник уложен на держатели для мягкой кровли из пластика с бетонным утяжелением. В качестве элементов крепления и соединения использованы биметаллические универсальные соединители Cu/Al Rd8-10/Rd8-10 и стеновые держатели из меди Rd8-10.

      Внутренняя молниезащита: 4-х полюсный разрядник перенапряжения компании J. Propster, тип сети TNS, 12.5 кА.

      Заземление: выполнено в виде отдельных очагов с применением глубинных заземлителей из оцинкованной стали Rd20, полосы заземления сечением 40х4 мм, соединителей Rd20хFl40/Rd8-10 и изолированного проводника Rd10/13.


      Территория "Ногинск-Технопарк", производственно-складской корпус с офисно-бытовым блоком

      Адрес объекта: Московская обл., Ногинский район.

      Вид работ: производство и монтаж системы внешней молниезащиты и заземления.

      Комплектующие: J. Propster.

      Внешняя молниезащита: На плоской кровле защищаемого здания уложена молниеприемная сетка с шагом ячейки 10 х10 м. Зенитные фонари защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм в количестве девяти штук.

      Токоотводы: Проложены в «пироге» фасадов здания в количестве 16 штук. Для токоотводов использован проводник из оцинкованной стали в ПВХ-оболочке диаметром 10 мм.

      Заземление: Выполнено в виде кольцевого контура c горизонтальным заземлителем в виде оцинкованной полосы 40х4 мм и глубинными стерженями заземления Rd20 длиной L 2х1500 мм.

    Атмосферные явления с образованием молний, сопровождаемых яркими вспышками света, громом, называют грозами. Молнии – это грозовые разряды электричества, возникающие между облаками и Землей; внутри облаков.

    Опасность для жизни людей, сохранности промышленных, общественных строений, высотных инженерных сооружений – дымовых труб, антенн телевидения, радиосвязи, включая сотовую; вышек, опор электрических сетей; технологического оборудования, расположенного на открытых промышленных площадках, например, для ректификационных колонн предприятий нефтепереработки представляют молнии первого типа.

    Необходимость устройства молниезащиты связана с тем, что напряжение при грозовых разрядах достигает 50 млн. В, а сила тока – до 100 тыс. А; с выделением огромного количества световой, звуковой и тепловой энергии. Грозовые разряды являются электрическими взрывами, сходными с детонацией, наносящими разрушения строениям, ломающими деревья, послужившие им источниками заземления; травмируют, контузят людей, что нередко приводит к их гибели.

    Молниезащитой называют комплекс технических решений, что надежно обеспечивают безопасность людей, предохранение строений различного назначения, высотных объектов; технологического, инженерного оборудования производственных объектов; коммуникаций инфраструктуры населенных пунктов, линий электропередач как от прямых ударов грозовых разрядов, электромагнитной, электростатической индукции, так и от передачи электротока через металлоконструкции, коммуникации.

    Заземление и молниезащита – это то, чем согласно нормам должны быть оборудованы промышленные здания, инженерные коммуникации, а также другие объекты. Кроме того, пункт 4 статьи 50 предписывает в качестве одного из способов исключения источников зажигания устраивать защиту от молний для зданий, оборудования для повышения уровня .

    Нормы устройства молниезащиты

    Учитывая, что строения, сооружения, технологические установки, коммуникации довольно сильно отличаются по своему устройству, исполнению разработаны государственные, ведомственные, корпоративные нормы; стандарты, правила проектирования для организации оптимальной, эффективной защиты от грозовых разрядов для каждого типа объектов – от производственных объектов, где она впервые стала применяться, до жилых домов.

    В основе норм, что регламентируют создание технической защиты от молний, опыт организации электрической безопасности строений разного вида, назначения, с учетом особенностей, присущих современным постройкам, сооружениям и коммуникациям инфраструктуры, связи.

    Требования к молниезащите изложены во многих официальных документах. Проектирование, расчет молниезащиты ведется на основании следующей нормативно-технической базы:

    • « ». В настоящее время действует седьмое и некоторые главы шестого издания этого основополагающего документа, без знания требований которого невозможно проектирование любых видов, типов электрических установок, оборудования, аппаратуры защиты от поражения электротоком, включая молниезащиту. Промышленная безопасность защищаемых объектов с помещений, зданий также невозможна без этого вида защиты от высоковольтных разрядов электрического тока. Это учитывают требования по организации, исполнению молниезащиты для различных видов строений, инженерных сооружений, электрических коммуникаций, указанные в нескольких главах ПУЭ. Главы 2.4, 2.5 – для воздушных линий электропередач с рабочим напряжением меньше и больше 1 кВ соответственно, включая карту районирования территории России с указанием длительности гроз в году, что необходимо при проектировании систем, устройств молниезащиты. Глава 4.2 – для распределительных устройств, электрических подстанций напряжением больше 1 тыс. В. Глава 4.3 – для преобразовательных подстанций, установок.
    • . Ее предназначение видно из названия. Несмотря на то что документ утвержден еще Министерством энергетики Советского Союза, по согласованию с Госстроем, он действует и сегодня.
    • Некоторые ее положения неизбежно устарели, не успевая за научно-техническим прогрессом, поэтому при проектировании современных технических систем, устройств защиты от грозовых разрядов пользуются российскими ГОСТ, идентичными стандартам Международной электротехнической комиссии; а также отечественными инструкциями по молниезащите, вышедшими в свет позднее.
    • Один из этих документов СО 153-34.21.122-2003, разработанный тем же коллективом ученых, регламентирует устройство молниезащиты как строений, так и инфраструктурных коммуникаций.
    • ГОСТ Р МЭК 62305-1-2010 , ГОСТ Р МЭК 62305-2-2010 , представляющие собой две части одного национального стандарта о менеджменте рисков при защите объектов от грозовых разрядов. В первой части сформулированы общие принципы, во второй – методики оценки рисков гибели, получения травм от поражения электротоком людей; полного/частичного разрушения объектов, общественных коммуникаций; экономических потерь от попадания молний.
    • Важно, что при этом рассматриваются такие факторы, как , так как в расчетах учитываются пространства с огнеопасной средой – воздушной смесью паров , газов, пыли.
    • ГОСТ Р МЭК 62561.1-2014 . Это первая часть национального стандарта об элементах систем защиты от молний, касающаяся требований к их частям, соединениям.
    • ГОСТ Р МЭК 62561.2-2014 – к проводникам, электродам заземления.
    • ГОСТ Р МЭК 62561.3-2014 – к распределительным разрядникам.
    • ГОСТ Р МЭК 62561.4-2014 – к элементам крепления.
    • ГОСТ Р МЭК 62561.5-2014 – к смотровым колодцам, уплотнителям электродов заземления.

    Требования к проектированию, устройству заземления, защиты от молний электроустановок, оборудования зданий, линий электропередач в СССР также устанавливал СНиП 3.05.06-85 об электротехнических устройствах. Сегодня действует свод правил, выпущенный как его актуализированная версия – СП 76.13330.2016 .

    Помимо норм, действующих на территории РФ, следуют упомянуть сходные требования к системам защиты от грозовых зарядов, применяемые в союзных государствах. В Республике Казахстан – это СП РК 2.04-103-2013 об устройстве молниезащиты объектов, вышедший взамен аналогичной инструкции СН РК 2.04-29-2005; в Республике Беларусь – технический кодекс о защите от молний объектов, инженерных коммуникаций.

    Тип зон молниезащиты

    Под системами защиты от молний объектов, инженерных, коммуникаций и технологического оборудования понимают внешние и внутренние технические устройства, позволяющие защитить их как от прямого воздействия ударов молний, так и от вторичных воздействий – электрических, электромагнитных полей, сопровождающий грозовой разряд.

    Различают активные и пассивные системы защиты от молний.

    Пассивная , способная перехватить молнию до ее разряда на конструкции строительного объекта, корпуса оборудования или части инженерного, коммуникационного сооружения, и отвести заряд в землю, состоит из следующих элементов:

    • Приемника молний.
    • Молниеотводов.
    • Заземляющих устройств.

    В активной системе к этим неотъемлемым элементам добавляются устройства, генерирующие восходящий поток ионов, притягивающий к себе грозовой разряд.

    Проектируются, монтируются несколько видов систем молниезащиты – стержневая, тросовая, которые по результатам проведенных расчетов, в зависимости от количества стержней/тросов, их расстановки/расположения, конфигурации площади защиты, могут создавать два типа зон молниезащиты:

    • А. Степень надежности защиты – от 99, 5%.
    • Б – от 95%.

    На практике, если строительный объект, технологическая установка, вышка, столб, антенна инженерных коммуникаций полностью находится в зоне защиты от попадания молний, вероятность их поражения грозовым электрическим разрядом стремится к нулю.

    Классификация зданий и сооружений по устройству молниезащиты

    Существуют следующие категории молниезащиты строительных объектов , зависящие от назначения, значимости, и возможности взрыва; – наличия, количества, вида взрывопожароопасных материалов; региональной частотности грозовых разрядов; зафиксированных попаданий молний:

    • I категория , имеющая наивысший уровень защиты от возможного прямого попадания молний в объект. Это производственные объекты с наличием взрывоопасных зон классов опасности В-I, II. Тип зоны защиты – А.
    • II категория . Это здания производственного, складского назначения, открытые площадки как с хранением ЛВЖ, ГЖ, так и с установленным на них технологическим оборудованием, где они обращаются; а также взрывоопасные производства, наружные установки классом опасности ниже В-Iа. Тип зоны защиты для технологического оборудования, установленного на открытых промышленных площадках – Б; для объектов – А или Б в зависимости от прогнозируемого количества грозовых разрядов в год.
    • III категория . К ней относятся строительные объекты различного назначения III–V степеней стойкости к огню в районах, где годовая продолжительность гроз больше 20 часов. Основной тип молниезащиты – Б.

    Определить все основные параметры системы защиты от попадания молний для любого конкретного объекта можно по таблице 1 РД 34.21.122.

    Виды молниезащиты

    Система молниезащиты в зависимости от категории объектов может быть нескольких видов:

    • Защищающая от прямых ударов. Устройства, используемые для этого, называют молниеотводами, состоящими из несущей опоры, в качестве которой может служить сам строительный объект, приемника разряда, токоотвода и заземлителя. Применяют как стержневые, тросовые молниеотводы, так и металлическую сетку, уложенную на кровлю защищаемого объекта. Для воздушных линий электропередач используют грозозащитные тросы, принимающие разряд молнии.
    • От электростатической индукции. Осуществляется путем подсоединения всего электрооборудования к системе заземления объекта.
    • От электромагнитной индукции. Для этого в местах соединений устраиваются токопроводящие перемычки между участками трубопроводов, эстакад.
    • От заноса электрического потенциала, вызванного грозовым разрядом. Для этого все входящие в здания, сооружения коммуникации, включая металлическую оболочку электрических кабелей напряжением до 1 тыс. В, заземляются. Воздушные линии электропередач на подходах к объекту оборудуют грозозащитными тросами, а на опорах монтируют разрядники, ограничители перенапряжения.

    Средства и способы молниезащиты

    К средствам защиты от грозовых разрядов электричества относят:

    • стержневые приемники молний;
    • грозозащитные тросы;
    • сетчатые молниеприемники;
    • токоотводы;
    • контуры заземления строительных объектов.

    Варианты исполнения молниезащиты бывают двух видов:

    • Внешний, защищающий от прямого воздействия высокопотенциального электрического разряда, способного вызвать разрушения, взрывы и пожары, за счет его отвода в землю для рассеивания энергии.
    • Внутренний. Для защиты от вторичных факторов прямого или близкого к защищаемому объекту удара молнии. Для этого используют различные типы специальных приборов, называемых УЗИП – устройствами защиты от импульсных перенапряжений.

    Установка молниезащиты, испытание молниезащиты по окончании монтажных работ производится организациями, выполняющими электротехнические работы.

    Эксплуатация молниезащиты не требует дополнительных затрат, рассчитана на длительный период. Но, осмотр молниезащиты на предмет обнаружения механических повреждений приемников разряда, токоотводящих, заземляющих элементов, связей между ними все же обязателен.

    Проверка молниезащиты позволяет собственникам объектов, руководству предприятий, организаций быть уверенными, что она не подведет в опасный грозовой период.