Войти
Образовательный портал. Образование
  • Рецепты варенья из кабачков с лимоном, с курагой и в ананасовом соке
  • Как приготовить вкусные куриные сердечки с картофелем в мультиварке Куриные сердечки рецепт в мультиварке с картофелем
  • Сырный суп с курицей и грибами Куриный суп с сыром и грибами
  • Четверка монет таро значение
  • Что такое договор найма служебного жилого помещения?
  • Хлеб по технологии в духовке на дрожжах
  • Кто живет в 4 измерении. Как выглядело бы четвертое пространственное измерение

    Кто живет в 4 измерении. Как выглядело бы четвертое пространственное измерение

    Текущий этап эволюции человечества характеризуется отсутствием у подавляющего большинства людей способности к восприятию четырёхмерного мира – «второго зрения», – а также неразвитостью более совершенного, чем интеллект, аспекта сознания – интуиции.

    Раскрытие и последующее развитие нового (шестого) органа чувств – будущее человека новой (шестой) расы. Пока же человечество проходит переходный период на пути к новым возможностям, что подтверждается появлением так называемых экстрасенсов.

    В связи с этим, лишь незначительная часть населения планеты имеет опыт взаимодействия с миром высших измерений. Большинство же современных людей, живущих в реально многомерном мире, по-прежнему воспринимает и осознаёт лишь самую примитивную его часть – трёхмерный физический мир.

    Данное обстоятельство благоприятствует измышлению различных фантастических образов, приписываемых мирам бóльшей размерности. Это, в свою очередь, находит отражение не только в произведениях фантастов, но и в науке.

    Примерами таких научных фантазий могут служить 4D-континуум, тёмная материя, кротовые норы, тессеракты, симплексы, суперструны, браны... За этим безудержным вымыслом учёных стоит полная непригодность трёхмерного математического аппарата для понимания и описания многомерных пространств.

    ЗАМЕЧАНИЕ. То, что в математике называется «многомерными» пространствами, не имеет никакого отношения к реальности, поскольку в них не учитываются такие свойства подлинно многомерных пространств, как материальность и проницаемость; пространство наделяется непространственными свойствами, а свойство протяжённости вопреки здравому смыслу распространяется за пределы трёх измерений.

    3D-иллюзии о многомерности

    Главной бедой математики является то, что она больше тяготеет к ортодоксальным верованиям, чем к науке, поскольку построена не на обновляемых знаниях о мире, а на Неприкосновенных Священных Догматах , поколебать которые не в состоянии ни абсурд, ни парадоксы, ни научные открытия, ни череда кризисов, ни тысячелетия борьбы с догматизмом.

    Ниже перечислим лишь часть самых одиозных Догматов (и их следствия), что делают познание многомерной структуры окружающего нас мира с помощью ТАКОЙ математики принципиально невозможным .

    1. В математике якобы реально существуют пространства с размерностью меньше трёх; при этом 0D-«пространство» – это точка, 1D-«пространство» – линия, 2D-«пространство» – поверхность ;
    2. Размер математической точки равен нулю, но она якобы существует;
    3. Якобы реально существует пустое пространство – «пространство» безразмерной точки;
    4. Размеры тел необъяснимым образом определяются суммой размеров безразмерных точек;
    5. Из нулевого размера точки следует также её нематериальность;
    6. Из нематериальности точки (0D-«пространства») вытекает нематериальность любого пространства;
    7. Из нематериальности пространства следует непризнание пространства атрибутом (неотъемлемым свойством) материи;
    8. Из непонимания неразрывной связи между пространством и материей вытекает самое нелепое заблуждение, допускающее «перенос» 3D-сущностей в пространства высших измерений:
      во-первых, потому, что 3D-объекты уже содержат в себе материю всех высших измерений, то есть уже доступны всем высшим пространственным сущностям;
      во-вторых, полная принадлежность к пространству высшей размерности требует полной ликвидации низшей 3D-материальной оболочки, что равносильно смерти в 3D-мире.
    9. Следствием предыдущих заблуждений является отсутствие в математике понятия «пространственная среда»;
    10. Из непонимания несопоставимости свойств материи разных измерений следует абсурдность требования ортогональности пространственных «осей», операции сложения векторов и нахождения скалярных сумм для совокупности разноразмерных пространств.
    11. Последнее заблуждение проявляется, в частности, в попытке суммировать вектор скорости 4D-света с вектором скорости его 3D-источника, двигающегося в ином пространстве;
    12. Ярким свидетельством полного непонимания математиками сути многомерности является повсеместное отождествление многокомпонентных 3D-векторов (х 1 , х 2 , х 3 , ... х n) с якобы многомерными математическими конструкциями.

      Покажем это на примере вектора свойств 3D-куска сахара со следующими векторными компонентами: длина х 1 ; ширина х 2 ; высота х 3 ; вес х 4 ; цвет х 5 ; вкус х 6 ; срок изготовления х 7 . В терминах математики получим 7-ми «мерный» (!) вектор. Однако пространственных измерений в этой 7-ми компонентной конструкции будет только три.

      Данный пример позволяет также легко понять, что обычное трёхмерное пространство, выдаваемое в релятивизме за 4D-пространство-время Минковского не имеет к четвёртому пространственному измерению ни малейшего отношения.

    По выше названным и другим причинам, практически, все известные на сегодняшний день попытки смоделировать 4D-пространство средствами трёхмерной математики являются ничем иным, как 3D-фантазиями на недоступную для догматического мышления тему многомерности.

    Где искать четвёртое измерение

    Итак, если все перечисленные выше попытки научного понимания многомерных пространств являются не более, чем science fiction, то возникает несколько резонных вопросов:

    • Где же в таком случае скрывается хотя бы самое близкое к нам настоящее 4D-пространство?
    • И существует ли оно вообще?
    • А если существует, то почему же мы его не видим?

    Прежде всего, следует сказать, что четырёхмерное пространство – это такая же реальность, как и наблюдаемое нами трёхмерное пространство.

    На вопрос «Тогда почему мы его не видим?» проще всего ответить другим вопросом: «А почему никого не смущает то, что мы не видим содержимое компьютерных дисков, электричество, радиоволны, радиацию, свою ауру, чужие мысли»? Даже привидения удаётся увидеть только на фотоснимках.

    Сложнее будет понять ответ на вопрос: «Где находится четырёхмерное пространство»?

    Тем не менее, правильный ответ таков: «Мы все находимся внутри 4D-пространства; оно не только окружает нас, оно окружает и наполняет нас и всю 3D-Вселенную, включая космическое пространство и пространство внутри атомов; при этом нуклоны образованы частицами 4D-материи».

    Материя четырёхмерного пространства называется физическим эфиром , в современной физике, чаще всего, – физическим вакуумом.

    Согласно одной из гипотез частица эфира (амер) представляет собой электронно-позитронную пару. Таким образом, в невозбуждённом состоянии амер, как и атом, электрически нейтрален, но в отличии от атома он не содержит ядра.

    Безъядерная 4D-эфирная материя играет роль посредника (прослойки) между атомарными 3D-физическим и 5D-астральным мирами:

    • частица эфира приблизительно на 8 порядков тоньше физического атома;
    • астральный атом приблизительно на 8 порядков тоньше эфирной частицы;
    • относительно физического атома астральный атом тоньше на 16 порядков.

    На атомарном уровне структурирования материи различие в 8 порядков означает переход к новому измерению:

    • 3D-физический атом ≈ 10 -8 см;
    • 4D-частица эфира ≈ 10 -16 см;
    • 5D-астральный атом ≈ 10 -24 см.

    В реальном мире количественное изменение размеров материи в пределах одного измерения (для атомов одной размерности) периодически сопровождается диалектическими скачкообразными переходами к новым качественным уровням, например:

    • физический атом → физическое тело → физическое небесное тело...;
    • астральный атом → астральное тело → астральная планета и так далее.

    Математика же, игнорируя закон перехода количественных изменений в качественные и другие фундаментальные законы Мироздания , плодит лишь иллюзорно-мистические домыслы о многомерности, основанные исключительно на количественном , непрерывном и линейном наращивании размеров материи от несуществующего нуля до воображаемой бесконечности.

    В этом математическом беззаконии заключена ещё одна причина научных фантазий о многомерных мирах и пространствах.

    Упомянутая выше гипотеза многомерной организации Вселенной хорошо согласуется с наблюдениями и повседневным опытом, данными экстрасенсов и результатами экспериментов, а также со сведениями из Восточных духовных практик, оккультных, теософских и эзотерических источников.

    Свойства четвёртого измерения

    Пытаясь представить свойства гипотетического 4D-пространства, нельзя подменять здравый смысл трёхмерными математическими догмами. В противном случае нас ждут неприятные сюрпризы.

    Возможна ли 4-я ортогональная ось?

    У большинства из нас трёхмерное пространство ассоциируется с тремя осями декартовой системы координат. Поэтому многие с готовностью (не утруждая себя сомнениями и размышлениями) соглашаются с ничем не обоснованным догматом ортогональности N координатных осей для пространства N измерений.

    При этом почему-то совершенно забывается простейшая мысль: «Ведь если "что-то" мы не можем даже представить, то есть мысленно создать соответствующий образ, значит это "что-то" не существует в принципе»!

    Математики объясняют факт не понимания нами полёта их многомерных фантазий ограниченностью наших мыслительных способностей, поскольку, мол, окружающий нас мир трёхмерен. Однако на самом деле все разговоры об ограниченности нашего воображения – заведомая ложь, так как из 7-ми мерной материи мысли человек может с лёгкостью конструировать, как минимум, 6-ти мерные образы.

    Это означает только одно: математики вполне могли бы пояснить нам свои «многомерные видения», конечно, если бы в тех была хоть капля реальности. Пока же мы все обречены поклоняться догмату «четвёртой ортогональной оси», не имея даже малейших разъяснений по поводу её построения.

    Таким образом, очередной ложный догмат «четырёх перпендикуляров» к одной точке оборачивается ещё одним камнем преткновения на пути к пониманию реального многомерного мира.

    Что измеряют измерения?

    Почему пространственных измерений именно три, не больше и не меньше? Очевидно, потому, что атом, а с ним и вся остальная материя имеет строго три пространственные характеристики: длину, ширину и высоту.

    Что же характеризуют эти три характеристики пространства? Конечно же, протяжённость материальных объектов в трёх возможных направлениях: вперёд↔назад, влево↔вправо, вверх↔вниз.

    Можно ли указать ещё какие-то дополнительные характеристики протяжённости? Нет! Здравый смысл категорически отказывается от таких фантазий. Характеристик протяжённости можно представить только три для материи любой размерности.

    Есть ли у материи другие свойства, кроме протяжённости? Разумеется, есть: цвет, вязкость, температура... Но пространственное свойство у трёхмерной материи только одно – протяжённость.

    Возможно, 4D-материя обладает дополнительным пространственным свойством? Именно так! 4D-амер в силу его «тонкости» имеет по отношению к 3D-атому дополнительное пространственное свойство – проницаемость . В работе четвёртое измерение пространства названо «глубиной ».

    По мнению автора оба термина нельзя признать удачными. Термин «проницаемость» может быть ошибочно приписан 3D-материи, так как она проницаема для материи всех высших измерений. Термин «глубина» совпадает с терминологией Евклида для характеристики совсем иного свойства (протяжённости) тела.

    В этой связи, более предпочтительным представляется термин «вложенность », точнее передающий суть погружения высших пространств реального мира в низшие. Продемонстрируем сочетание пространственных характеристик протяжённости и вложенности на примере 5D-пространства :

    • три характеристики протяжённости (вперёд↔назад, влево↔вправо, вверх↔вниз);
    • две характеристики вложенности (в↔из 3D-пространства, в↔из 4D-пространства).

    Понятно, что 7D-пространство будет иметь всё те же три характеристики протяжённости, а характеристик вложенности будет уже на две больше, то есть четыре, а в целом – 3+4 – семь.

    Нетрудно видеть, что приведенная трактовка многомерности реального мира исключает ортогональность направлений протяжённости с направлениями вложенности, а последних ещё и между собой. Это позволяет прекратить домыслы на тему множественной ортогональности для многомерных пространств.

    Что во что вложено?

    Огромное количество публикаций повествует нам о том, что умозрительное двухмерное «пространство» вложено в трёхмерное. Чаще всего в качестве примера 2D-«пространства» приводится лист книги. Ну, а затем делается «гениальное» заключение о вложенности уже реального 3D-пространства в пространство четырёх измерений и далее аналогичным образом. В результате, на свет появляются фантастические псевдо-многомерные конструкции в виде тессерактов, симплексов и прочих псевдо-гипер-многогранников.

    Апеллировать здесь к здравому смыслу совершенно бесполезно, потому что вся царица наук построена на незыблемой вере в реальность «пространств» с размерностью меньше трёх. Поэтому для разоблачения подобных манипуляций с лже-пространствами, возьмём на заметку два имевших место принципиально важных момента :

    • Низшее пространство в примере с книгой мысленно «вкладывалось» в высшее, то есть в пространство с бóльшим числом измерений;
    • Все фигурирующие в примере пространства наполнены материей одного типа , то есть трёхмерным веществом бумаги.

    Если теперь от религиозных догм математики перейти к примерам из реальной жизни, то мы увидим, что 4D-электрон вкладывается в 3D-атом, 4D-радиоволна вкладывается в 3D-радиоприёмник. При этом всё происходит строго наоборот, ранее взятым на заметку моментам:

    • В реальной жизни высшее пространство вкладывается в низшее;
    • Материя реальных пространств разной размерности различна.

    Если бы мы действовали в соответствии с правилами математики из первого примера, то оказалось бы, что атом может быть вложен в электрон, а радиоприёмник – в радиоволну, что, безусловно, является абсурдом, как и математические «пространства» с размерностью меньше трёх.

    Выводы

    1. Понимание многомерных пространств в рамках современной (трёхмерной) математики принципиально невозможно.
    2. Для исследования многомерных пространств необходима разработка нового раздела «Многомерной математики».
    3. Выход математики из кризиса невозможен без отказа от многотысячелетнего догматизма в пользу пересматриваемой научной парадигмы.

    Литература

    1. Микиша А. М., Орлов В. Б. Толковый математический словарь: Основные термины. – М.: Рус. яз., 1989. – 244 с.
    2. Пространство Минковского: Материал из Википедии. – http://ru.wikipedia.org/wiki/Пространство_Минковского
    3. Александр Котлин. Как понять четырёхмерное пространство? –
    4. Александр Котлин. Космические октавы – ключ к новому пониманию Мира. –
    5. Александр Котлин. Основы математики – беззаконие в кубе. – 27.02.2014. –
    6. Блаватская Е. П. Тайная доктрина: Синтез науки, религии и философии. Том 1: Космогенезис. – Л.: Экополис и культура, 1991. – 361 с.
    7. Николай Уранов. Нести радость. Фрагменты писем. 1965-1981. – Рига: Мир Огненный, 1998. – 477 с.
    8. Начала Евклида. Книги XI-XV. Перевод с греческого и комментарии Д. Д. Мордухай-Болтовского при участии М. Я. Выгодского и И. Н. Веселовского. – Гос. изд-во технико-теоретич. лит-ры, М.-Л.: 1950. – 335 с.
    9. Александр Котлин. Как понять 10-ти мерное пространство? –
    • потом переросли бы в два круга, по мере нашего «снижения» через их вселенную,
    • круги росли бы, пока не соединились в овал,
    • затем рядом с ними бы появились другие кружочки (пальцы),
    • переросли бы в два больших круга (кисти, руки), вместе с овалом,
    • потом все слилось бы в одну большую часть наших плеч,
    • затем сузилось бы, выросло и растворилось в наших шеях и головах.

    К счастью, в нашей Вселенной не проживают четырехмерные существа, поскольку они казались бы нам игнорирующими физические законы божественными существами. Но что, если мы окажемся не самыми многомерными созданиями во Вселенной, а у самой Вселенной будет больше измерений, чем сейчас? Стоит отметить, что это вполне возможно; доказано, что в прошлом у Вселенной могло быть больше измерений.

    В контексте общей теории относительности весьма просто выстроить пространственно-временные рамки, в которых число «больших» (то есть макроскопических) измерений изменялось бы со временем. Вы не только могли располагать большим числом измерений в прошлом, но и в будущем вам вполне может выпасть такой шанс; вы вообще могли бы построить пространство-время, в котором это число будет колебаться, изменяясь в большую и меньшую сторону со временем, снова и снова.

    Для начала все круто: у нас может быть Вселенная с четвертым - дополнительным - пространственным измерением.

    Итак, это круто, но как это будет выглядеть? Обычно мы не думаем о таком, но четыре фундаментальных взаимодействия - гравитация, электромагнетизм и два ядерных взаимодействия - обладают такими свойствами и силами, поскольку существуют при тех измерениях, которыми располагает наша Вселенная. Если бы мы уменьшили или увеличили число измерений, мы бы изменили то, как, например, распространяются линии силового поля.

    Если бы это затронуло электромагнетизм или ядерные силы, случилась бы катастрофа.

    Представьте, что вы смотрите на атом или внутри атома смотрите на атомное ядро. Ядра и атомы являются строительными кирпичиками всей материи, из которой состоит наш мир, и измеряются мельчайшими расстояниями: ангстрем для атомов (10^-10 метра), фемтометры для ядер (10^-15 метра). Если бы вы позволили этим силам «утекать» в другое пространственное измерение, что они могли бы осуществить только если это измерение достигнет достаточно больших размеров, изменились бы законы взаимодействий, управляющие работой этих сил.

    В целом эти силы будут иметь больше «пространства» для разбегания, а значит будут быстрее становиться слабее на дистанции, если будет больше измерений. Для ядер это изменение будет не таким уж плохим: размеры ядер будут больше, некоторые ядра изменят свою стабильность, станут радиоактивными или, напротив, от радиоактивности избавятся. Это ладно. Но с электромагнетизмом будет сложнее.

    Представьте, что случилось бы, если бы вдруг силы, связывающие электроны с ядрами, стали слабее. Если бы произошло изменение силы этого взаимодействия. Вы не думаете об этом, но на молекулярном уровне единственное, что вас удерживает, это относительно слабые связи между электронами и ядрами. Если вы измените эту силу, вы измените конфигурации всего остального. Ферменты денатурируют, белки изменят форму, лиганды разойдутся; ДНК не будет кодироваться в молекулах, в которых должна.

    Другими словами, если электромагнитная сила изменится, поскольку начнет распространяться в крупное четвертое пространственное измерение, которое достигнет размеров ангстрема, тела людей моментально развалятся, и мы умрем.

    Но не все потеряно. Есть много моделей - в основном разработанных в рамках теории струн - где эти силы, электромагнитные и ядерные, ограничены тремя измерениями. Только гравитация может проходить через четвертое измерение. Для нас это означает, что если четвертое измерение будет расти в размере (и, следовательно, в последствиях), гравитация будет «кровоточить» в дополнительное измерение. Следовательно, объекты будут испытывать меньшее притяжение, чем то, к которому привыкли мы.

    Все это приведет к проявлению «странного» поведения у разных вещей.

    Астероиды, например, - которые сцепились вместе - разлетятся, поскольку их гравитации окажется недостаточно, чтобы удержать камни вместе. Кометы, приближаясь к Солнцу, будут испаряться быстрее и демонстрировать еще более красивые хвосты. Если четвертое измерение вырастет достаточно большим, на Земле сильно уменьшатся гравитационные силы, в результате чего наша планета вырастет больше, особенно вдоль экватора.

    Люди, живущие вблизи полюсов, почувствуют себя словно в среде с уменьшенной гравитацией, а люди на экваторе окажутся в опасности улететь в космос. На макроуровне знаменитый закон тяготения Ньютона - закон обратных квадратов - внезапно станет законом обратного куба, сильно уменьшая силу тяжести с расстоянием.

    Если измерение достигнет размеров дистанции от Земли до Солнца, все в Солнечной системе окажется развязанным. Даже если это будет длиться всего пару дней в году - и если гравитация будет в норме каждые три месяца - наша полностью развалится всего за сто лет.

    На Земле настали бы времена, когда мы не только получили бы возможность передвигаться «дополнительным» путем через пространстве, когда обзавелись бы не только дополнительным «направлением», помимо вверх-вниз, влево-право и вперед-назад, но и когда свойства гравитации изменились бы в худшую сторону. Мы прыгали бы выше и дальше, но последствия для ныне стабильной Вселенной были бы апокалиптическими.

    Поэтому мечтать о появлении четвертого измерения точно не стоит. Впрочем, есть и позитивная нотка. Нам не пришлось бы беспокоиться о глобальном потеплении, поскольку увеличение расстояния до Солнца сильно охладило бы наш мир, быстрее, чем нарастающий атмосферный углекислый газ его нагревает.

    Запускает проект «Вопрос учёному», в рамках которого специалисты будут отвечать на интересные, наивные или практичные вопросы. В этом выпуске кандидат физико-математических наук Илья Щуров рассказывает о 4D и о том, можно ли выйти в четвёртое измерение.

    Что такое четырёхмерное пространство («4D»)?

    Илья Щуров

    Кандидат физико-математических наук, доцент кафедры высшей математики НИУ ВШЭ

    Начнём с самого простого геометрического объекта - точки. Точка - нульмерна. У неё нет ни длины, ни ширины, ни высоты.

    Сдвинем теперь точку по прямой на некоторое расстояние. Допустим, что наша точка - остриё карандаша; когда мы её сдвинули, она прочертила отрезок. У отрезка есть длина, и больше никаких измерений - он одномерен. Отрезок «живёт» на прямой; прямая является одномерным пространством.

    Возьмём теперь отрезок и попробуем его сдвинуть, как раньше точку. (Можно представить себе, что наш отрезок - это основание широкой и очень тонкой кисти.) Если мы выйдем за пределы прямой и будем двигаться в перпендикулярном направлении, получится прямоугольник. У прямоугольника есть два измерения - ширина и высота. Прямоугольник лежит в некоторой плоскости. Плоскость - это двумерное пространство (2D), на ней можно ввести двумерную систему координат - каждой точке будет соответствовать пара чисел. (Например, декартова система координат на школьной доске или широта и долгота на географической карте.)

    Если сдвинуть прямоугольник в направлении, перпендикулярном плоскости, в которой он лежит, получится «кирпичик» (прямоугольный параллелепипед) - трёхмерный объект, у которого есть длина, ширина и высота; он расположен в трёхмерном пространстве - в таком, в каком живём мы с вами. Поэтому мы хорошо представляем себе, как выглядят трёхмерные объекты. Но если бы мы жили в двумерном пространстве - на плоскости - нам пришлось бы изрядно напрячь воображение, чтобы представить себе, как можно сдвинуть прямоугольник, чтобы он вышел из той плоскости, в которой мы живём.

    Представить себе четырёхмерное пространство для нас также довольно непросто, хотя очень легко описать математически. Трёхмерное пространство - это пространство, в котором положение точки задаётся тремя числами (например, положение самолёта задаётся долготой, широтой и высотой над уровнем моря). В четырёхмерном же пространстве точке соответствует четвёрка чисел-координат. «Четырёхмерный кирпич» получается сдвигом обычного кирпичика вдоль какого-то направления, не лежащего в нашем трёхмерном пространстве; он имеет четыре измерения.

    На самом деле мы сталкиваемся с четырёхмерным пространством ежедневно: например, назначая свидание, мы указываем не только место встречи (его можно задать тройкой чисел), но и время (его можно задавать одним числом - например, количеством секунд, прошедших с определённой даты). Если посмотреть на настоящий кирпич, у него есть не только длина, ширина и высота, но ещё и протяженность во времени - от момента создания до момента разрушения.

    Физик скажет, что мы живём не просто в пространстве, а в пространстве-времени; математик добавит, что оно четырёхмерно. Так что четвёртое измерение ближе, чем кажется.

    Задачи:

    Привести какой-нибудь другой пример реализации четырёхмерного пространства в реальной жизни.

    Определить, что такое пятимерное пространство (5D). Как должен выглядеть 5D-фильм?

    Ответы просьба присылать на e-mail: [email protected]

    • Перевод

    Наверняка вам известно, что планеты движутся вокруг солнца по эллиптическим орбитам. Но почему? На самом деле, они двигаются по окружностям в четырёхмерном пространстве. А если спроецировать эти окружности на трёхмерное пространство, они превращаются в эллипсы.

    На рисунке плоскость обозначает 2 из 3 измерений нашего пространства. Вертикальное направление – это четвёртое измерение. Планета движется по кругу в четырёхмерном пространстве, а её «тень» в трёхмерном движется по эллипсу.

    Что же это за 4-е измерение? Оно похоже на время, но это не совсем время. Это такое особенное время, которое течёт со скоростью, обратно пропорциональной расстоянию между планетой и солнцем. И относительно этого времени планета двигается с постоянной скоростью по кругу в 4 измерениях. А в обычном времени его тень в трёх измерениях двигается быстрее, когда она находится ближе к солнцу.

    Звучит странно – но это просто необычный способ представления обычной ньютоновской физики. Этот способ известен по крайней мере с 1980 года благодаря работе математического физика Юргена Мозера. А я узнал об этом, получив на email работу за авторством Джеспера Горансона под названием «Симметрии в задаче Кеплера» (8 марта 2015).

    Самое интересное в этой работе – такой подход объясняет один интересный факт. Если взять любую эллиптическую орбиту, и повернуть её в 4-мерном пространстве, то мы получим другую допустимую орбиту.

    Конечно, можно вращать эллиптическую орбиту вокруг солнца и в обычном пространстве, получая допустимую орбиту. Интересно то, что это можно делать в 4-мерном пространстве, например, заужая или расширяя эллипс.

    В общем случае любую эллиптическую орбиту можно превратить в любую другую. Все орбиты с одинаковой энергией – это круговые орбиты на одной и той же сфере в 4-мерном пространстве.

    Задача Кеплера

    Допустим, у нас есть частица, которая двигается по закону обратных квадратов. Уравнением её движения будет

    Где r - позиция как функция времени, r - расстояние от центра, m – масса, а k определяет силу. Отсюда можно вывести закон сохранения энергии

    Для некоей константы E, зависящей от орбиты, но не меняющейся со временем. Если эта сила будет притяжением, то k > 0, а на эллиптической орбите E < 0. Будем звать частицу планетой. Планета двигается вокруг солнца, которое настолько тяжело, что его колебаниями можно пренебречь.

    Будем исследовать орбиты с одной энергией E. Поэтому единицы массы, длины и времени можно принять любыми. Положим

    M = 1, k = 1, E = -1/2

    Это избавит нас от лишних букв. Теперь уравнение движения выглядит как

    А закон сохранения говорит

    Теперь, следуя идее Мозера, перейдём от обычного времени к новому. Назовём его s и потребуем, чтобы

    Такое время идёт медленнее по мере удаления от солнца. Поэтому скорость планеты по удалению от солнца увеличивается. Это компенсирует тенденцию планет двигаться по мере удаления от солнца более медленно в обычном времени.

    Теперь перепишем закон сохранения при помощи нового времени. Поскольку для производных по обычному времени я использовал точку, давайте будем использовать штрих для производных по времени s. Тогда к примеру:

    Используя такую производную, Горансон показывает, что сохранение энергии можно записать в виде

    А это ни что иное, как уравнение четырёхмерной сферы. Доказательство будет позже. Сейчас поговорим о том, что это для нас значит. Для этого нам надо совместить меж собой координату обычного времени t и пространственные координаты (x,y,z). Точка

    Двигается в четырёхмерном пространстве по мере изменения параметра s. То есть, скорость этой точки, а именно

    Двигается по четырёхмерной сфере. Это сфера радиуса 1 с центром в точке

    Дополнительные расчёты показывают другие интересные факты:

    T""" = -(t" - 1)

    Это обычные уравнения гармонического осциллятора, но с дополнительной производной. Доказательство будет позже, а пока подумаем, что это значит. Словами это можно описать так: 4-мерная скорость v совершает простые гармонические колебания вокруг точки (1,0,0,0).

    Но так как v в то же время остаётся на сфере с центром в этой точки, то можно заключить, что v двигается с постоянной скоростью по кругу на этой сфере. А это подразумевает, что среднее значение пространственных компонент 4-мерной скорости равно 0, а среднее t равно 1.

    Первая часть понятна: наша планета в среднем не улетает от Солнца, поэтому её средняя скорость равна нулю. Вторая часть посложнее: обычное время t движется вперёд со средней скоростью 1 относительно нового времени s, но скорость его изменения колеблется синусоидально.

    Проинтегрировав обе части

    Мы получим

    a . Уравнение говорит, что позиция r гармонически осциллирует вокруг точки a . Поскольку a не меняется со временем, это сохраняющаяся величина. Это называется вектором Лапласа-Рунге-Ленца.

    Часто люди начинают с закона обратных квадратов, показывают, что угловой момент и вектор Лапласа-Рунге-Ленца сохраняются, и используют эти сохраняющиеся величины и теорему Нётер, чтобы показать наличие 6-мерной группы симметрий. Для решений с отрицательной энергией это превращается в группу поворотов в 4 измерениях, SO(4). Поработав ещё немного, можно увидеть, как задача Кеплера сопряжена с гармоническим осциллятором в 4 измерениях. Это делается через репараметризацию времени.

    Мне больше понравился подход Гораснона, потому что он начинается с репараметризации времени. Это позволяет эффективно показать, что эллиптическая орбита планеты – это проекция круговой орбиты в четырёхмерном пространстве на трёхмерное. Таким образом становится очевидна 4-мерная вращательная симметрия.

    Горансон переносит этот подход на закон обратных квадратов в n-мерном пространстве. Получается, что эллиптические орбиты в n измерениях – это проекции круговых орбит из n+1 измерений.

    Он также применяет этот подход для орбит с положительной энергией, которые представляют собой гиперболы, и для орбит с нулевой энергией (параболы). У гипербол получается симметрия групп Лоренца, а у парабол – симметрия групп Евклида. Это известный факт, однако примечательно, как просто он выводится с помощью нового подхода.

    Математические детали

    Из-за обилия уравнений я поставлю вокруг важных уравнений рамки. Основные уравнения – сохранение энергии, сила и изменение переменных, которые дают:

    Начинаем с сохранения энергии:

    Затем используем

    Чтобы получить

    Немного алгебры – и получаем

    Это показывает, что 4-мерная скорость

    Остаётся на сфере единичного радиуса с центром в (1,0,0,0).

    Следующий шаг – взять уравнение движения

    И переписать его, используя штрихи (производные по s), а не точки (производные по t). Начинаем с

    И дифференцируем, чтобы получить

    Теперь используем другое уравнение для

    И получаем

    Теперь хорошо бы получить формулу и для r"". Сначала посчитаем

    А затем продифференцируем

    Подключим формулу для r", кое-что сократится, и мы получим

    Вспомним, что закон сохранения говорит

    А мы знаем, что t" = r. Поэтому,

    Получаем

    Поскольку t" = r, то получается

    Как нам и нужно.

    Теперь получим сходную формулу для r""" . Начнём с

    И продиффиренцируем

    Подключим формулы для r"" и r"" ". Кое-что сокращается, и остаётся

    Проинтегрируем обе части и получаем

    Для некоего постоянного вектора a . Это значит, что r гармонически осциллирует относительно a . Занятно, что и вектор r и его норма r осциллируют гармонически.

    Квантовая версия планетарной орбиты – атом водорода. Всё, что мы посчитали, можно использовать и в квантовой версии. Подробности см. у Greg Egan,

    • Перевод

    Наверняка вам известно, что планеты движутся вокруг солнца по эллиптическим орбитам. Но почему? На самом деле, они двигаются по окружностям в четырёхмерном пространстве. А если спроецировать эти окружности на трёхмерное пространство, они превращаются в эллипсы.

    На рисунке плоскость обозначает 2 из 3 измерений нашего пространства. Вертикальное направление – это четвёртое измерение. Планета движется по кругу в четырёхмерном пространстве, а её «тень» в трёхмерном движется по эллипсу.

    Что же это за 4-е измерение? Оно похоже на время, но это не совсем время. Это такое особенное время, которое течёт со скоростью, обратно пропорциональной расстоянию между планетой и солнцем. И относительно этого времени планета двигается с постоянной скоростью по кругу в 4 измерениях. А в обычном времени его тень в трёх измерениях двигается быстрее, когда она находится ближе к солнцу.

    Звучит странно – но это просто необычный способ представления обычной ньютоновской физики. Этот способ известен по крайней мере с 1980 года благодаря работе математического физика Юргена Мозера. А я узнал об этом, получив на email работу за авторством Джеспера Горансона под названием «Симметрии в задаче Кеплера» (8 марта 2015).

    Самое интересное в этой работе – такой подход объясняет один интересный факт. Если взять любую эллиптическую орбиту, и повернуть её в 4-мерном пространстве, то мы получим другую допустимую орбиту.

    Конечно, можно вращать эллиптическую орбиту вокруг солнца и в обычном пространстве, получая допустимую орбиту. Интересно то, что это можно делать в 4-мерном пространстве, например, заужая или расширяя эллипс.

    В общем случае любую эллиптическую орбиту можно превратить в любую другую. Все орбиты с одинаковой энергией – это круговые орбиты на одной и той же сфере в 4-мерном пространстве.

    Задача Кеплера

    Допустим, у нас есть частица, которая двигается по закону обратных квадратов. Уравнением её движения будет

    Где r - позиция как функция времени, r - расстояние от центра, m – масса, а k определяет силу. Отсюда можно вывести закон сохранения энергии

    Для некоей константы E, зависящей от орбиты, но не меняющейся со временем. Если эта сила будет притяжением, то k > 0, а на эллиптической орбите E < 0. Будем звать частицу планетой. Планета двигается вокруг солнца, которое настолько тяжело, что его колебаниями можно пренебречь.

    Будем исследовать орбиты с одной энергией E. Поэтому единицы массы, длины и времени можно принять любыми. Положим

    M = 1, k = 1, E = -1/2

    Это избавит нас от лишних букв. Теперь уравнение движения выглядит как

    А закон сохранения говорит

    Теперь, следуя идее Мозера, перейдём от обычного времени к новому. Назовём его s и потребуем, чтобы

    Такое время идёт медленнее по мере удаления от солнца. Поэтому скорость планеты по удалению от солнца увеличивается. Это компенсирует тенденцию планет двигаться по мере удаления от солнца более медленно в обычном времени.

    Теперь перепишем закон сохранения при помощи нового времени. Поскольку для производных по обычному времени я использовал точку, давайте будем использовать штрих для производных по времени s. Тогда к примеру:

    Используя такую производную, Горансон показывает, что сохранение энергии можно записать в виде

    А это ни что иное, как уравнение четырёхмерной сферы. Доказательство будет позже. Сейчас поговорим о том, что это для нас значит. Для этого нам надо совместить меж собой координату обычного времени t и пространственные координаты (x,y,z). Точка

    Двигается в четырёхмерном пространстве по мере изменения параметра s. То есть, скорость этой точки, а именно

    Двигается по четырёхмерной сфере. Это сфера радиуса 1 с центром в точке

    Дополнительные расчёты показывают другие интересные факты:

    T""" = -(t" - 1)

    Это обычные уравнения гармонического осциллятора, но с дополнительной производной. Доказательство будет позже, а пока подумаем, что это значит. Словами это можно описать так: 4-мерная скорость v совершает простые гармонические колебания вокруг точки (1,0,0,0).

    Но так как v в то же время остаётся на сфере с центром в этой точки, то можно заключить, что v двигается с постоянной скоростью по кругу на этой сфере. А это подразумевает, что среднее значение пространственных компонент 4-мерной скорости равно 0, а среднее t равно 1.

    Первая часть понятна: наша планета в среднем не улетает от Солнца, поэтому её средняя скорость равна нулю. Вторая часть посложнее: обычное время t движется вперёд со средней скоростью 1 относительно нового времени s, но скорость его изменения колеблется синусоидально.

    Проинтегрировав обе части

    Мы получим

    a . Уравнение говорит, что позиция r гармонически осциллирует вокруг точки a . Поскольку a не меняется со временем, это сохраняющаяся величина. Это называется вектором Лапласа-Рунге-Ленца.

    Часто люди начинают с закона обратных квадратов, показывают, что угловой момент и вектор Лапласа-Рунге-Ленца сохраняются, и используют эти сохраняющиеся величины и теорему Нётер, чтобы показать наличие 6-мерной группы симметрий. Для решений с отрицательной энергией это превращается в группу поворотов в 4 измерениях, SO(4). Поработав ещё немного, можно увидеть, как задача Кеплера сопряжена с гармоническим осциллятором в 4 измерениях. Это делается через репараметризацию времени.

    Мне больше понравился подход Гораснона, потому что он начинается с репараметризации времени. Это позволяет эффективно показать, что эллиптическая орбита планеты – это проекция круговой орбиты в четырёхмерном пространстве на трёхмерное. Таким образом становится очевидна 4-мерная вращательная симметрия.

    Горансон переносит этот подход на закон обратных квадратов в n-мерном пространстве. Получается, что эллиптические орбиты в n измерениях – это проекции круговых орбит из n+1 измерений.

    Он также применяет этот подход для орбит с положительной энергией, которые представляют собой гиперболы, и для орбит с нулевой энергией (параболы). У гипербол получается симметрия групп Лоренца, а у парабол – симметрия групп Евклида. Это известный факт, однако примечательно, как просто он выводится с помощью нового подхода.

    Математические детали

    Из-за обилия уравнений я поставлю вокруг важных уравнений рамки. Основные уравнения – сохранение энергии, сила и изменение переменных, которые дают:

    Начинаем с сохранения энергии:

    Затем используем

    Чтобы получить

    Немного алгебры – и получаем

    Это показывает, что 4-мерная скорость

    Остаётся на сфере единичного радиуса с центром в (1,0,0,0).

    Следующий шаг – взять уравнение движения

    И переписать его, используя штрихи (производные по s), а не точки (производные по t). Начинаем с

    И дифференцируем, чтобы получить

    Теперь используем другое уравнение для

    И получаем

    Теперь хорошо бы получить формулу и для r"". Сначала посчитаем

    А затем продифференцируем

    Подключим формулу для r", кое-что сократится, и мы получим

    Вспомним, что закон сохранения говорит

    А мы знаем, что t" = r. Поэтому,

    Получаем

    Поскольку t" = r, то получается

    Как нам и нужно.

    Теперь получим сходную формулу для r""" . Начнём с

    И продиффиренцируем

    Подключим формулы для r"" и r"" ". Кое-что сокращается, и остаётся

    Проинтегрируем обе части и получаем

    Для некоего постоянного вектора a . Это значит, что r гармонически осциллирует относительно a . Занятно, что и вектор r и его норма r осциллируют гармонически.

    Квантовая версия планетарной орбиты – атом водорода. Всё, что мы посчитали, можно использовать и в квантовой версии. Подробности см. у Greg Egan,