Войти
Образовательный портал. Образование
  • Колики у новорожденных, лечение в домашних условиях Народные средства против коликов у новорожденных
  • Так делать или нет прививку от гриппа?
  • Оформление спортивного уголка в доу своими руками
  • Чему равен 1 год на меркурии
  • Кто такой Николай Пейчев?
  • Томас андерс - биография, фото, личная жизнь солиста дуэта "модерн токинг" Синглы Томаса Андерса
  • Защита от лазерных излучений кратко. Способы и средства защиты от лазерного излучения. Что такое лазерное излучение

    Защита от лазерных излучений кратко. Способы и средства защиты от лазерного излучения. Что такое лазерное излучение

    Лазеры и излучение от них используется человечеством уже довольно давно. Помимо медицинской среды эксплуатации подобные устройства получили широкое применение в технических отраслях промышленности. Взяли их на вооружение специалисты из области декорирования и создания спецэффектов. Теперь ни одно масштабное шоу не обходится без сцены с лазерными лучами.

    Чуть позже такое излучение перестало принимать только промышленные формы и стало встречаться в быту. Но не все знают, как отражается влияние лазерного излучения на организм человека при регулярном и периодическом облучении.

    Что такое лазерное излучение?

    Лазерное излучение рождается по принципу создания света. В обоих случаях используются атомы. Но в ситуации с лазерами присутствуют другие физические процессы, и прослеживается воздействие электромагнитного поля внешнего типа. Из-за этого ученые называют излучение от лазеров вынужденным или стимулированным.

    В терминологии физики лазерным излучением называют электромагнитные волны, которые распространяются почти параллельно по отношению друг к другу. Из-за этого лазерный луч отличается острой направленностью. Кроме этого такой луч обладает небольшим углом рассеивания совместно с огромной интенсивностью влияния на поверхность, которую облучают.

    Главным отличием лазера от стандартной лампы накаливания считается спектральный диапазон. Лампа числится рукотворным источником света, который излучает электромагнитные волны. Спектр освещения у классической лампы составляет почти 360 градусов.

    Воздействие лазерного облучения на все живое

    Вопреки стереотипам, влияние лазерного излучения на организм человека не всегда подразумевает что-то негативное. Из-за повсеместного использования квантовых генераторов в разных жизненных сферах ученые решили задействовать возможности узконаправленного луча в медицине.

    В ходе многочисленных исследований стало понятно, что лазерное облучение имеет несколько характерных свойств:

    • Повреждения от лазера могут производиться не только в процессе прямого воздействия на организм из аппарата. Нанести ущерб может даже рассеянное облучение или отраженные лучи.
    • Между степенью поражения и основными параметрами электромагнитной волны прослеживается прямая связь. Также на тяжесть поражения влияет расположение облученной ткани.
    • Негативный эффект при поглощении тканями энергии может выражаться в тепловом или световом воздействии.

    Но вот последовательность при поражении лазером всегда предусматривает идентичный биологический принцип:

    • повышение температуры, которое сопровождается ожогом;
    • закипание межтканевой и клеточной жидкостей;
    • образование пара, создающего весомое давление;
    • взрыв и ударная волна, разрушающие все ткани поблизости.

    Зачастую неправильно использованный лазерный излучатель несет, в первую очередь, угрозу для кожных покровов. Если влияние было особенно сильным, то кожа будет выглядеть отечной, со следами многочисленных кровоизлияний. Также на теле будут встречаться большие участки омертвевших клеток.

    Задевает такое облучение и внутренние ткани. Но при масштабных внутренних поражениях рассеянное воздействие лучами не столько сильно, как прямое или отраженное зеркально. Подобные повреждения будут гарантировать патологические изменения в функционировании различных систем организма.

    Кожный покров, который страдает больше всего, является защитой внутренних органов каждого человека. Из-за этого он берет большую часть негативного воздействия на себя. В зависимости от разных степеней поражения на коже будут проявляться покраснения или прослеживаться некроз.

    Исследователи пришли к выводу, что люди с темной кожей менее восприимчивы к глубинным поражениям из-за лазерного облучения.

    Схематически все ожоги можно разделить на четыре степени вне зависимости от пигментации:

    • I степень. Подразумевает стандартные ожоги эпидермиса.
    • II степень. Включает ожоги дермы, что выражается в образовании характерных пузырей поверхностного слоя кожи.
    • III степень. Основывается на глубинных ожогах дермы.
    • IV степень. Самая опасная степень, которая отличается деструкцией всей толщины кожи. Поражение охватывает подкожную клетчатку, а также соседствующие к ней слои.

    Лазерные поражения глаз

    На втором месте в негласном рейтинге возможного отрицательного влияния лазера на организм человека находятся поражения органов зрения. Короткие лазерные импульсы способны за небольшой промежуток времени вывести из строя:

    • сетчатку,
    • роговицу,
    • радужную оболочку,
    • хрусталик.

    Причин для подобного воздействия существует несколько. Основными из них выступают:

    • Невозможность вовремя среагировать. Из-за того что длительность импульса составляет не более 0,1 секунды, человек не успевает моргнуть. Из-за этого глаз остается незащищенным.
    • Легкая уязвимость. По своим особенностям хрусталик и роговица считаются сами по себе уязвимыми органами.
    • Оптическая глазная система. Из-за фокусировки лазерного излучения на глазном дне, точка облучения при попадании на сосуд сетчатки способна закупорить его. Так как там нет болевых рецепторов, то повреждение обнаружить мгновенно не получится. Только после того как выжженная территория становится больше, человек замечает отсутствие части изображения.

    Чтобы быстрее сориентироваться при потенциальном поражении, эксперты советуют прислушиваться к таким симптомам:

    • спазмы век,
    • отек век,
    • болевые ощущения,
    • кровоизлияние в сетчатке,
    • помутнение.

    Опасности добавляет тот факт, то поврежденные лазером клетки сетчатки теряют возможность восстановиться. Так как интенсивность облучения, влияющего на органы зрения ниже, чем идентичный порог для кожи, врачи призывают к осторожности.

    Следует остерегаться инфракрасных лазеров разного типа, а также приборов, которые генерируют излучение с мощностью свыше 5 мвт. Распространяется правило на технику, выдающую лучи видимого спектра.

    Взаимосвязь между лазерной волной и ее сферой применения

    Каждая из областей применения лазерного излучения ориентируется на строго определенный показатель длины волны.

    Данный показатель напрямую зависит от природы. Вернее, от электронного строения рабочего тела. Это означает, что ответственной за длину волны выступает среда, где происходит генерация ее излучения.

    В мире имеются разные виды твердотельных и газовых лазеров. Задействованные лучи должны принадлежать к одному из трех наиболее распространенных типов:

    • видимый,
    • ультрафиолетовый,
    • инфракрасный.

    При этом рабочий диапазон облучения может колебаться от 180 нм до 30 мнм.

    Особенности влияния лазера на человеческий организм базируются на длине волны. Так, например, человек быстрее реагирует на зеленый лазер, чем на красный. Последний не отличается безопасностью для всего живого. Причина кроется в том, что наше зрение почти в 30 раз луче воспринимает зеленый, нежели красный цвет.

    Как защититься от лазера?

    В большинстве случаев защита от лазерного излучения нужна тем людям, чья работа тесно связана с его постоянным использованием. Если предприятие имеет на своем балансе любой тип квантового генератора, то его руководители обязательно производят инструктаж своих сотрудников.

    Эксперты разработали отдельную сводку правил поведения и безопасности, которые позволят защитить сотрудника от возможных последствий излучения. Главным правилом выступает наличие средств индивидуальной защиты. Причем подобные средства могут разительно отличаться в зависимости от прогнозируемой степени опасности.

    Всего в международной классификации предусмотрено разделение на четыре класса опасности. Соответствующую маркировку должен указать изготовитель. Только первый класс считается относительно безопасным даже для органов зрения.

    Ко второму классу принадлежат излучения прямого типа, которые поражают органы глаз. Также к представленной категории причислено зеркальное отражение.

    Гораздо опаснее излучение третьего класса. Его прямое воздействие угрожает глазам. Не менее опасно отраженное излучение диффузного типа на расстоянии 10 см от поверхности. Кожные поражения будут происходить не только при прямом воздействии, но и при зеркально отраженном.

    При четвертом классе страдает и кожа, и глаза при различных форматах воздействия.

    К коллективным защитным мерам на производстве причисляют:

    • специальные кожухи,
    • защитные экраны,
    • световоды,
    • инновационные методы слежения,
    • сигнализации,
    • блокировки.

    Из относительно примитивных, но действенных способов выделяют ограждение зоны, где производится облучение. Это позволит защитить работников от случайного облучения по неосторожности.

    Также на особо опасных предприятиях обязательно использовать средства индивидуальной защиты сотрудников. Они подразумевают под собой особый комплект спецодежды. Не обойтись во время работы и без ношения очков, предусматривающих защитное покрытие.

    Лазерные гаджеты и их излучение

    Многие не подозревают о том, насколько серьезными могут быть последствия бесконтрольной эксплуатации самодельных устройств с лазерным принципом. Касается это самодельных конструкций вроде лазерных:

    • светильников,
    • указок,
    • фонариков.

    Особенно это касается старшеклассников, которые стремятся провести ряд опытов, не имея представления о правилах безопасности при их конструировании.

    Использовать лазеры домашнего производства в помещениях, где присутствуют люди, недопустимо. Также нельзя направлять лучи на стекла, металлические пряжки и прочие предметы, которые могут давать отблески.

    Даже если луч отличается небольшой интенсивностью, он может привести к трагедии. Если навести лазер на глаза водителя во время активного движения, то он может ослепнуть и не справиться с управлением.

    Ни при каких обстоятельствах нельзя заглядывать в объектив лазерного источника излучения. Отдельно стоит учитывать то, что очки для работы с лазером должны быть рассчитаны на ту длину волны, которую будут генерировать выбранные аппараты.

    Чтобы не допустить серьезной трагедии доктора просят прислушаться к этим рекомендациям и следовать им всегда.

    Лазерное излучение – это вынужденное (посредством лазера) испускание атомами вещества порций-квантов электромагнитного излучения. Само слово «лазер» происходит от английского laser – аббревиатура словосочетания «усиление света с помощью вынужденного излучения». Следовательно, лазер (оптический квантовый генератор) это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.

    Лазерная установка включает активную (лазерную) среду с опти­ческим резонатором, источник энергии ее возбуждения и, как правило, систему охлаждения.

    Лазерные установки используются при обработке металлов (резание, сверление, поверхностная закалка и др.), в хирургии, для целей локации, навигации, связи и пр. Наибольшее распространение в промышленности получили лазеры, генерирующие электромагнитные излучения с /ушной волны 0,33; 0,49; 0,63; 0,69; 1,06; 10,6 мкм (микро­метр).

    Лазерное излучение характеризуют основные физические вели­чины:

    • длина волны,мкм;
    • энергетическая освещенность (плотность мощности), Вт/см2, – отношение потока излучения, падающего на рассматриваемый небольшой участок поверхности, к площади этого участка;
    • энергетическая экспозиция, Дж/см2, – отношение энергии излучения, определяемой на рассматриваемом участке поверхности, к площади этого участка;
    • длительность импульса, с;
    • длительность воздействия, с, – срок воздействия лазерного излучения на человека в течение рабочей смены;
    • частота повторения импульсов, Гц, – количество импульсов за 1 с.

    Лазеры классифицированы по 4 классам опасности . Наиболее опасны лазеры четвертого класса.

    При работе с лазерными установками на работника оказывает воз­действие прямое (непосредственно от лазера), рассеянное и отраженное лазерное излучение. Степень неблагоприятного воздействия зависит от параметров лазерного излучения, которое может привести к поражению глаз (сетчатки, роговицы, радужки, хрусталика), ожогам кожи, астеническим и вегетативно-сосудистым расстройствам.

    Защита работников от лазерного излучения

    Основными нормативными документами в области лазерной без­опасности, к которым относятся СанПиН 5804-91 «Санитарные нормы и правила устройства и эксплуатации лазеров», ГОСТ 12.1.040-83 «ССБТ. Лазерная безопасность. Общие требования», ГОСТ 12.1.031-81 «ССБТ. Лазеры. Методы дозиметрического контроля лазерного излучения», установлены методы и средства зашиты от поражения лазерным излучением.

    Защита работников от лазерного излучения осуществляется организационно-техническими, санитарно-гигиеническими и лечебно-профилактическими методами и средствами:

    К организационно-техническим методам защиты работников от лазерного излучения относятся:

    • выбор, планировка и внутренняя отделка помещений;
    • рациональное размещение лазерных установок и порядок их обслуживания;
    • организация рабочего места;
    • применение средств защиты (ограждения, защитные экраны, блокировки, автоматические затворы, кожухи, защитные очки, щитки, маски и другие средства коллективной и индивидуальной защиты);
    • ограничение времени воздействия излучения;
    • назначение и инструктаж лиц, ответственных за организацию и проведение работ на лазерных установках;
    • ограничение допуска к проведению работ;
    • организация надзора за режимом работ;
    • обучение обслуживающего персонала безопасным методам и приемам выполнения работ с лазерными установками;
    • четкая организация противоаварийных работ и регламентация порядка ведения работ в аварийных ситуациях;
    • установка зоны лазерной безопасности.

    Санитарно-гигиеническими и лечебно-профилактическими методами и средствами защиты работников от лазерного излучения являются:

    • контроль за уровнями вредных и опасных факторов на рабочих местах (периодический дозиметрический контроль лазерного излучения);
    • контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

    С целью обеспечения безопасности работ с лазерами при разработке проектов, планировок и размещении оборудования прежде всего должны быть предусмотрены меры по защите работающих от лазерных излучений, а также от других сопутствующих опасных и вредных производственных факторов.

    Наличие того или иного неблагоприятного фактора зависит от типа и мощности лазеров, а также от условий их применения. Перечень опасных и вредных производственных факторов, которые могут присутствовать при эксплуатации лазеров I-IV классов, приведен в табл. 11.1.

    Для защиты от лазерного излучения предусматриваются следующие меры.

    Размещение лазерных установок разрешается только в специально оборудованных помещениях. Следует избегать размещения в одном помещении двух и более лазерных установок. В последнем случае для каждой установки отводят отдельный светонепроницаемый бокс. Двери помещений, в которых размещены лазерные установки III, IV классов, должны быть заперты на внутренние замки с блокирующими устройствами, исключающими доступ в помещения во время работы лазеров, а также иметь автоматически включающееся световое табло «Опасно, работает лазер!»

    На дверях помещений, оборудовании, приборах и в других местах, где имеется лазерное излучение, должен быть знак лазерной опасности «Опасно. Лазерное излучение» по ГОСТ 12.4.026-2001.

    Установку размещают таким образом, чтобы луч лазера был направлен на капитальную, неотражающую, огнестойкую стену, но не на окна, двери, некапитальные сооружения, способные пропускать излучение. Стены и потолки окрашивают матовой краской с малой отражающей способностью. Для фона мишени рекомендуется темная краска с высоким коэффициентом поглощения, а для окружающей площади – светлая. Предметы, находящиеся в помещении, за исключением специальной аппаратуры, не должны иметь зеркальных поверхностей. Если этого нельзя избежать, то такие поверхности драпируют материалом (черной байкой или другими подобными).

    Следует избегать работ с лазерными установками при затемнении помещения. Естественное и искусственное освещение должно быть обильным, чтобы зрачок глаза всегда имел минимальные размеры. Никакие работы не должны производиться при недостаточном освещении.

    Для предотвращения поражения прямым или зеркально отраженным лучом лазера предусматриваются ограждения, исключающие возможность выхода луча за пределы установки закрытого типа и возможность проникновения человека в зону прохождения луча; применяются блокировки или затворы для защиты глаз работающего на установке, в которой системы наблюдения совпадают с оптической системой.

    Оградительные устройства – для защиты от лазерного излучения подразделяют:

    По способу применения – стационарные и передвижные;

    По конструкции – откидные, раздвижные, съемные;

    По способу изготовления – сплошные, со смотровыми стеклами, с отверстием переменного диаметра;

    По структурному признаку – простые, составные (комбинированные);

    По виду применяемого материала – неорганические, органические, комбинированные;

    По принципу ослабления – поглощающие, отражающие, комбинированные;

    По степени ослабления – непрозрачные, частично прозрачные;

    По конструктивному исполнению – бленды, диафрагмы, заглушки, затворы, кожухи, козырьки, колпаки, крышки, камеры, кабины, мишени, обтюраторы, перегородки, световоды, смотровые окна, ширмы, щитки, шторки, щиты, шторы, экраны.

    При изготовлении экранирующих щитов, ширм, штор необходимо применять непрозрачные теплостойкие материалы. Если отсутствует опасность возникновения пожара от луча лазера, ограждения могут быть выполнены из плотной ткани.

    Помещения, в которых при эксплуатации лазерных установок происходит образование вредных газов и аэрозолей, должны быть оборудованы общеобменной, а в необходимых случаях и местной вытяжной вентиляцией для удаления загрязненного воздуха с последующей его очисткой. В случае использования веществ I и II классов опасности должна быть предусмотрена аварийная вентиляция.

    При работе лазеров на открытом месте следует обозначить зону повышенной плотности энергии излучения и оградить ее стойкими, непрозрачными экранами для исключения возможности выхода луча за пределы этой зоны. Следует избегать работы наружных установок при плохой погоде, так как туманы, снег, пыль усиливают рассеивание лучей.

    Для оценки опасности действия лазерного излучения в производственных условиях следует произвести расчет лазерно опасной зоны.

    Расчет границ лазерно опасной зоны

    Достаточно надежным и простым методом определения границы лазерно опасной зоны может быть расчет плотности потока излучения (облученности) в различных точках пространства вокруг лазерных установок. При проведении такого расчета необходимо знать выходные характеристики лазерного излучения и коэффициент отражения (альбедо) излучения от мишени ρ. Наиболее важными характеристиками лазерного излучения, определяющими его воздействие на биологические объекты, являются: длина волны, диаметр и расходимость пучка, длительность и частота повторения импульсов, энергия (мощность) излучения. Как правило, эти параметры известны из паспортных данных лазерной установки с достаточной точностью.

    При определении границ лазерно опасной зоны исходят из предположения, что воздействие на человека прямых и зеркально отраженных лучей исключено конструкцией установки.

    Расчет лазерно опасной зоны начинают с определения границ зоны 1 , внутри которой источник излучения (отражающая поверхность) является для глаза протяженным, рис. 11.1.

    Рис. 11.1. Схема к расчету лазерно опасной зоны:

    I – граница зоны 1 ; II - граница лазерно опасной зоны; III - граница зоны, внутри которой

    излучение представляет опасность для кожи; 1 – лазер; 2 - мишень

    Отражающая поверхность будет протяженным источником в том случае, если она видна под углом большим или равным α min . Угол α min определяется из условия, когда поверхность с энергетической яркостью L е , равной ПДУ для диффузно отраженного излучения, создает на роговице глаза энергетическую освещенность, соответствующую ПДУ для коллимированного излучения, т.е.

    , (11.6)

    где Θ - угол между направлением визирования и нормалью к поверхности; - энергетическая освещенность на роговице глаза, равная ПДУ для коллимированного излучения.

    Значения α min для различных длительностей экспозиций приведены в табл. 11.2.

    Таблица 11.2.

    Предельный угол видения протяженного источника

    Угол видения отражающей поверхности α вычисляется по формуле:

    , (11.7)

    где S q – площадь пятна на отражающей поверхности; R – расстояние от поверхности до наблюдателя.

    Подставив в формулу (11.7) выражение для α min (11.6), определим значение радиуса зоны 1 – R 1:

    , (11.8)

    где Е э " – энергетическая освещенность на роговице глаза, равная ПДУ для коллимированного излучения; L е ´ – энергетическая яркость поверхности, равная ПДУ для диффузионно отраженного излучения.

    Граница лазерно опасной зоны определяется в каждом конкретном случае по следующей схеме:

    1) рассчитывается угол видения отражающей поверхности по формуле (11.7);

    2) полученное по формуле (11.7) значение угла α сравнивается с предельным углом видения протяженного источника α min , при этом могут возникнуть две ситуации:

    а) угол видения отражающей поверхности меньше α min (точечный источник); в этом случае граница лазерно опасной зоны вычисляется по формуле:

    (11.9)

    б) угол видения отражающей поверхности больше α min (протяженный источник). В этом случае повреждение органов зрения определяется энергетической яркостью отражающей поверхности L е. Если энергетическая яркость диффузно отражающей поверхности меньше ПДУ, то источник является безопасным. Если энергетическая яркость равна ПДУ, то граница лазерно опасной зоны совпадает с границей зоны I (рис. 11.1), вычисляемой по формуле (11.8). И, наконец, если энергетическая яркость превышает ПДУ, то граница лазерно опасной зоны вычисляется по формуле (11.9).

    Лазерное излучение может представлять также опасность для кожи. В этом случае опасность лазерного излучения определяется величиной облученности кожных покровов и не зависит от геометрических размеров источников излучения. Граница зоны, внутри которой необходимо использовать средства защиты кожи, вычисляется по формуле (11.9), в которую необходимо вместо ПДУ для глаз подставить значение ПДУ для кожи.

    Расчет лазерно опасной зоны при длине волны излучения, находящейся вне интервала 0,4-1,4 мкм, проводится по формуле (11.9) независимо от геометрических размеров источника излучения.

    Расчетный метод оценки границ лазерно опасной зоны является ориентировочным (рис. 11.1), так как он требует знаний энергетических характеристик лазерного излучения, коэффициента отражения излучения, закона отражения и не учитывает дополнительно отраженного от различных предметов (оптических элементов и т.п.) излучения. Более точным является экспериментальный метод, позволяющей по результатам измерений строить истинную картину поля излучения вокруг лазерных установок.

    Меры защиты от других опасных и вредных факторов, возникающих при эксплуатации лазерных установок (см. табл. 11.1), выбирают с учетом требований, изложенных в соответствующих разделах данной книги.

    Средства индивидуальной защиты

    СИЗ от лазерного излучения включают в себя средства защиты глаз и лица (защитные очки, щитки, насадки), средства защиты рук, специальную одежду. При выборе СИЗ необходимо учитывать рабочую длину волны излучения и оптическую плотность светофильтра.

    Оптическая плотность светофильтров, применяемых в защитных очках, щитках и насадках, должна удовлетворять требованиям:

    , (11.10)

    или (для диапазона 380 < λ £1400 нм)

    , (11.11)

    где , , , - максимальные значения энергетических параметров лазерного излучения в рабочей зоне; , , , - предельно допустимые уровни энергетических параметров при хроническом облучении.

    Защитные очки предназначены для защиты глаз при определенной длине волны, что необходимо учитывать при их выборе. В качестве светофильтров рекомендуется применять стекла по ГОСТ 9411-91 «Стекло оптическое цветное. Технические условия». Отдельные марки стекол приведены в табл. 11.3.

    Длина волны, нм Марка стекла
    УФС1, УФС5, ПС11, БСЗ, БС12
    УФС2, УФС5, УФС6, БС4
    ФС1, ФС6, СЗС7, СЗС8, СЗС9
    СС16, ОС5, ПС11
    СС1, СС2, СС4, СС5, ЖЗС9, ЖЗС12
    УФС8, ФС1, СС1, СЗС5, ОС5, ИКС1, ПС11
    ФС6, СЗС15, ИКСЗ, ИКС5, ИКСУ
    ИКСЗ, ИКС5, ИКС7
    СЗС5, СЗС16, НС14, ТСЗ
    ИКС1, ИКСЗ, ИКС6, ИКС7
    Примечание: УФС – ультрафиолетовое стекло; ФС – фиолетовое стекло; ИКС – инфракрасное стекло; ОС – оранжевое стекло; СЗС – сине-зеленое стекло; БС – бесцветное (ультрафиолетовое) стекло; ПС – пурпурное стекло; ЖЗС – желто-зеленое стекло; СС – синее стекло; НС – нейтральное стекло; ТС – темное стекло

    В паспорте на очки должны быть указаны диапазоны длин волн, на которые рассчитаны эти очки, и оптическая плотность светофильтра.

    Форма оправы защитных очков должна исключить возможность попадания излучения лазера внутрь очков через щели между оправой и лицом, а также обеспечивать широкое поле зрения. Целесообразно очки вмонтировать в маску или полумаску, защищающую лицо.

    Защитные лицевые щитки применяются в тех случаях, когда лазерное излучение представляет опасность не только для глаз, но и для кожи лица.

    При настройке резонаторов газовых лазеров, работающих в видимой области спектра, для защиты глаз следует применять защитные насадки (ЗН). Защитные насадки могут использоваться самостоятельно или в сочетании с оптическими устройствами, такими как диоптрийная трубка.

    Одежда должна оставлять возможно меньше открытых частей тела. Она может быть обычной, предпочтительней халаты из непроницаемой ткани черного цвета. Руки защищают хлопчатобумажными перчатками.

    Контроль лазерных излучений

    Дозиметрический контроль лазерного излучения заключается в оценке тех характеристик лазерного излучения, которые определяют его способность вызывать биологические эффекты, и сопоставлении их с нормируемыми величинами.

    Различают две формы дозиметрического контроля: предупредительный(оперативный) дозиметрический контроль и индивидуальный дозиметрический контроль.

    Предупредительный дозиметрический контроль заключается в определении максимальных уровней энергетических параметров лазерного излучения в точках на границе рабочей зоны, он проводится в соответствии с регламентом, утвержденным администрацией предприятия, но не реже одного раза в год в порядке текущего санитарного надзора, а также в следующих случаях:

    При приемке в эксплуатацию новых лазерных изделий II-IV классов;

    При внесении изменений в конструкцию действующих лазерных изделий;

    При изменении конструкции средств коллективной защиты;

    При проведении экспериментальных и наладочных работ;

    При аттестации рабочих мест;

    При организации новых рабочих мест.

    Предупредительный дозиметрический контроль проводят при работе лазера в режиме максимальной отдачи мощности (энергии), определенной в паспорте на изделие и конкретными условиями эксплуатации.

    Индивидуальный дозиметрический контроль заключается в измерении уровней энергетических параметров излучения, воздействующего на глаза (кожу) конкретного работающего в течение рабочего дня, он проводится при работе на открытых лазерных установках (экспериментальных стендах), а также в тех случаях, когда не исключено случайное воздействие лазерного излучения на глаза и кожу.

    Для проведения измерений применяются переносные дозиметры лазерного излучения, отвечающие требованиям ГОСТ 24469-80 «Средства измерений параметров лазерного излучения. Общие технические требования» и позволяющие определять облученность Е е и энергетическую экспозицию Н е в широком спектральном, динамическом, временном и частотном диапазонах.

    При измерениях энергетических параметров лазерного излучения предел допускаемой погрешности дозиметров не должен превышать 30%.

    Промышленностью выпускается ряд приборов, позволяющих измерять энергетические характеристики лазерного излучения, см. приложение 10. В зависимости от типа приемника излучения приборы подразделяются на колориметрические (цвет), пироэлектрические (появление электрических зарядов при изменении температуры), болометрические (изменение электрического сопротивления термочувствительных элементов), пондеромоторные (эффект давления света на тело) и фотоэлектрические (изменение проводимости).

    Контрольные вопросы к разделу 11:

    1. Что такое – лазер, и с какими его свойствами связано широкое применение в различных отраслях деятельности?

    2. Как подразделяют лазеры по типу активной среды?

    3. Какие параметры лазерного излучения относят к энергетическим?

    4. Какие параметры лазерного излучения относят к временны́м?

    5. Какие виды лазерного излучения существуют?

    6. Как подразделяют лазеры по степени опасности генерируемого излучения?

    7. Какие опасные и вредные факторы могут возникнуть при работе лазера?

    8. Чем определяется биологическое воздействие лазерных излучений на организм человека?

    9. От каких факторов зависит степень тяжести повреждения организма человека при воздействии лазерного излучения?

    10. Что может случиться от попадания прямого или отраженного пучка лазерного излучения на кожные покровы или роговицу глаза человека?

    11. Зависят ли предельно допустимые уровни (ПДУ) лазерного излучения от длины его волны?

    12. Какие требования предъявляются к помещениям для размещения лазеров?

    13. Какие требования предъявляются к освещению помещений, в которых проводятся работы с лазерами?

    14. Как должен быть ориентирован лазерный луч при его использовании?

    17. Какие средства индивидуальной защиты применяются при работе с лазерным излучением?

    15. Какое стекло можно использовать для защитных от лазерного излучения очков?

    16. В каких случаях проводится предупредительный дозиметрический контроль лазерного излучения?

    17. С какой целью проводится индивидуальный дозиметрический контроль лазерного излучения?

    Подробности Просмотров: 3236 Вопросы по лазерной безопасности

    Согласно Санитарным правилам и нормам 2.2.4.13-2-2006 «Лазерное "в излучение и гигиенические требования при эксплуатации лазерных изделий», утвержденным постановлением Главного государственного санитарного врача Республики Беларусь от 17 февраля 2006)6 г. № 16, средства защиты должны снижать уровни лазерного излучения, действующего на человека, до величин ниже предельно допустимых уровней.

    Средства защиты не должны уменьшать эффективность технологического процесса и работоспособность человека. Их защитные характеристики должны оставаться неизменными в течение установленного срока эксплуатации.

    Выбор средств защиты должен производиться в зависимости от класса а лазера, интенсивности излучения в рабочей зоне, характера выполняемой работы.

    Показатели защитных свойств средств защиты не должны снижаться я под воздействием других вредных и опасных факторов (вибрации, [, температуры и т. д.). Конструкция средств защиты должна обеспечивать возможность смены основных элементов (светофильтров, экранов, смотровых стекол и пр.).

    Согласно ГОСТ 12.4.011-89 «ССБТ. Средства защиты работающих. Общие требования и классификация» и ГОСТ 12.1.040-83 «ССБТ. Т. Лазерная безопасность. Общие положения» средства защиты от лазерного излучения подразделяются на коллективные и индивидуальные.

    Средства коллективной защиты от лазерного излучения - оградительные устройства - подразделяют:

    по о способу применения - на стационарные и передвижные;

    по в конструкции - на откидные, раздвижные, съемные;

    по с способу изготовления - на сплошные, со смотровыми стеклами, с отверстием переменного диаметра;

    по с структурному признаку - на простые, составные (комбинированные);

    по в виду применяемого материала - на неорганические, органические^, комбинированные;

    по л принципу ослабления - на поглощающие, отражающие, комбинированные;

    по с степени ослабления - на непрозрачные, частично прозрачные;

    по к конструктивному исполнению - на бленды, диафрагмы, заглушки затворы, кожухи, козырьки, колпаки, крышки, камеры, кабины, а мишени, обтюраторы, перегородки, световоды, смотровые окна, ширмы, щитки, шторки, щиты, шторы, экраны.

    Средствами защиты от лазерного излучения являются: предохранительные устройства;

    устройства автоматического контроля и сигнализации; устройства дистанционного управления; символы органов управления.

    Предохранительные устройства подразделяют по конструктивному исполнению на:

    оптические устройства для визуального наблюдения и юстировки с вмонтированными светофильтрами; котировочные лазеры;

    телеметрические и телевизионные системы наблюдения; индикаторные устройства.

    Средства коллективной защиты должны предусматриваться на стадии проектирования и монтажа лазеров, при организации рабочих мест, при выборе эксплуатационных параметров и должны соответствовать требованиям ГОСТ 12.4.011-89 «ССБТ. Средства защиты работающих. Общие требования и классификация» и ГОСТ 12.2.049-80 «Система стандартов безопасности труда. Оборудование производственное. Общие эргономические требования».

    Средства индивидуальной защиты от лазерного излучения включают средства защиты глаз и лица (очки защитные, щитки защитные лицевые, защитные насадки для настройщиков резонаторов газовых лазеров), средства защиты рук, специальную одежду.

    Средства индивидуальной защиты глаз и лица должны применяться в комплексе со средствами коллективной защиты при выполнении пусконаладочных, ремонтных и экспериментальных работ.

    В зависимости от длины волны лазерного излучения в противолазерных очках используются оранжевые, сине-зеленые или бесцветные стекла.

    Светофильтры должны обеспечивать снижение уровней облучения до нормативных требований.

    При выборе средств индивидуальной защиты необходимо учитывать:

    рабочую длину волны излучения; оптическую плотность светофильтра.

    При настройке резонаторов газовых лазеров, работающих в видимой области спектра, для защиты глаз необходимо применять защитные насадки, которые могут использоваться самостоятельно или в сочетании с оптическими устройствами, такими как диоптрийная трубка.

    Средства индивидуальной защиты должны соответствовать требованиям ГОСТ 12.4.011-89 «ССБТ. Средства защиты работающих.

    Общие требования и классификация» и маркироваться в соответствии с ГОСТ 12.4.115-82 «Система стандартов безопасности труда. Средства индивидуальной защиты работающих. Общие требования к маркировке».

    Принцип действия лазеров основан на использовании вынужденного электромагнитного излучения, возникающего в результате возбуждения квантовой системы. Лазерное излучение является электромагнитным излучением, генерируемым в диапазоне длин волн 0,2-1000мкм. В настоящее время чаще применяются лазеры с длиной волны 0,34;0,49-0,51;0,69;1,06 и 10,6 мкм.

    Основные энергетические параметры лазерного излучения являются согласно ГОСТ 15093-75: энергия излучения Е, энергия импульса Еи, мощность излучения Р, плотность энергии излучения Wе. Излучение также характеризуется временными параметрами: длительностью импульса,частотой повторения f, длительностью воздействия излучения t, длиной волны.

    При эксплуатации лазерных установок персонал может подвергаться воздействию ряда опасных и вредных факторов. Основную опасность представляет прямое, рассеянное и отраженное излучение. Из-за большой интенсивности прямого лазерного излучения и малой расходимости луча достигается высокая плотность излучения (1011 – 1014 Вт/см2), в то время как для испарения самых твёрдых материалов достаточно 109 Вт/см2.

    При эксплуатации лазерных установок наблюдаются сопутствующие опасные и вредные факторы: световое излучение от импульсных ламп накачки, ионизирующее излучение; высокое напряжение в электрической цепи ламп накачки или газового разряда; шум и вибрация; электромагнитные ВИ и СВЧ поля; инфракрасное излучение; запыленность и загазованность воздуха продуктами взаимодействия лазерного луча с мишенью и молекулами воздуха.

    Биологические эффекты воздействия лазерного излучения на организм человека зависит от энергетических и временных параметров т. е. от длины волны излучения, длительности импульса, времени воздействия на облучаемый участок, а также от биологических и физико-технических особенностей облучаемых тканей.

    Интенсивное облучение кожи лазерным излучением может вызвать в ней различные изменения от легкого покраснения до поверхностного обугливания. Кроме того, возможны повреждения внутренних тканей и органов. Наиболее чувствительным органом к лазерному излучению являются глаза, поэтому даже при незначительных интенсивностях излучения попадание лазерного луча в глаза опасно.

    Большое значение в предупреждении неблагоприятного воздействия лазерного излучения на организм человека имеет соблюдение мер лазерной безопасности и санитарных норм. В соответствии с "Санитарными нормами эксплуатации лазеров" установлены предельно допустимые нормы облучения роговицы, сетчатки глаз и кожи.

    Предельно допустимые уровни облучения импульсного и непрерывного лазерного излучения выбирают из расчета наименьшей величины энергетической экспозиции, не вызывающей биологических изменений в организме человека с учетом длины волны и длительности излучения. Так для непрерывного лазерного излучения с = 0,3мкм при облучении глаз и кожи в течение рабочего дня предельный допустимый уровень Нпду = 10-4 Дж/см2.

    При импульсном излучении, если длительность импульса менее 0,25с, предельно допустимый уровень облучения рассчитывается с учетом частоты повторения импульсов f и длительности воздействия t.

    Способы защиты от лазерного излучения подразделяются на коллективные и индивидуальные. Коллективные средства защиты включают телевизионные средства наблюдения за ходом процесса; защитные экраны, системы блокировки и сигнализации, ограждение лазерной опасной зоны.

    Для контроля лазерного излучения и определения границ лазерно-опасной зоны применяют ряд приборов, которые разделяют на калориметрические, болометрические, фотоэлектрические. Тепловые действия излучения на приемный элемент используется в калориметрических, болометрических приемниках излучения. Фотоэлектрические методы основаны на применении фотоприемников излучений, в которых поглощение фотонов сопровождается электрически регистрируемым процессом. Фотоэлектрические приборы имеют высокую чувствительность и используются в дозиметрических приборах типа ИЛД-Z.