Войти
Образовательный портал. Образование
  • Причины выброса токсичных веществ Несгораемые углеводороды и сажа
  • Современный этап развития человечества
  • Лилия яковлевна амарфий Могила лилии амарфий
  • Значение имени мариям Имя марьям значение происхождение
  • Семь советов от Отцов Церкви
  • Унжа (Костромская область)
  • Технические меры защиты от воздействия электрического тока. Технические способы и средства защиты от поражения электрическим током. Использование защитных блокировок

    Технические меры защиты от воздействия электрического тока. Технические способы и средства защиты от поражения электрическим током. Использование защитных блокировок

    Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства:

    1.защитное заземление, зануление;

    2.защитное отключение;

    3.выравнивание потенциалов;

    4.малое напряжение;

    5.изоляцию токоведущих частей;

    6.электрическое разделение сети;

    7.оградительные устройства;

    8.блокировка;

    9.предупредительную сигнализацию;

    10.знаки безопасности;

    11.предупредительные плакаты;

    12.электрозащитные средства.

    Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением при замыкании на корпус и по другим причинам.

    Зануление – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам. Задача зануления состоит в устранении опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим частям электрической установки, оказавшейся под напряжением вследствие замыкания на корпус. Решается эта задача быстрым отключением поврежденной электроустановки от сети. Принцип действия зануления состоит в превращении замыкания на корпус в однофазное короткое замыкание с целью вызвать большой ток, способный вызвать срабатывание защиты.

    Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. При применении этого вида защиты безопасность обеспечивается отключением аварийного участка в течение 0,1-0,2 секунды.

    Выравнивание потенциалов – это метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек. Для выравнивания потенциала в землю укладывают стальные полосы в виде сетки по всей площади, занятой оборудованием.

    Малое напряжение – это номинальное напряжение не более 42 В, примененное в цепях для уменьшения опасности поражения электрическим током.

    Для изоляции токоведущих частей применяют следующие изоляции:

    Рабочую – это электрическая изоляция токоведущих частей электрооборудования, обеспечивающая его нормальную работу и защиту от его поражения электрическим током;

    Дополнительную – предусматривается дополнительно к рабочей в случае ее повреждения (пластмассовый корпус);

    Двойную – это электрическая изоляция, состоящая из рабочей и дополнительной;

    Усиленную – это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты от повреждения электрическим током, как и двойная изоляция.

    Электрическое разделение сети – разделение сети на отдельные, электрически несвязанные между собой участки с помощью разделяющего трансформатора. Разделяющий трансформатор изолирует электрические приемники от первичной сети и сети заземления. Вторичная обмотка трансформатора и корпус электрического приемника не должны иметь ни заземления, ни связи с сетью зануления.

    Предупредительная сигнализация выполняется световой или звуковой. Для световых сигналов применяются следующие цвета: красный – запрещающие и аварийные сигналы; желтый – для привлечения внимания, сигнализирует о достижении предельных значений, о переходе на автоматическую работу; зеленый – для сигнализации безопасности, сообщает о нормальном режиме работы, разрешение о начале действия; белый – для обозначения включенного состояния, используется когда нерационально использование красного, желтого и зеленого цветов; синий – используется в специальных случаях, когда не могут быть применены остальные цвета.

    Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.

    Основные способы и средства электрозащиты:

    Изоляция токопроводящих частей и ее непрерывный контроль;

    Установка оградительных устройств;

    Предупредительная сигнализация и блокировки;

    Использование знаков безопасности и предупреждающих плакатов;

    Использование малых напряжений;

    Электрическое разделение сетей;

    Защитное заземление;

    Выравнивание потенциалов;

    Зануление;

    Защитное отключение;

    Средства индивидуальной электрозащиты.

    Изоляция токопроводящих частей - одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5-10 МОм 1 . Различают рабочую, двойную и усиленную рабочую изоляцию.

    Рабочей называется изоляция, обеспечивающая нормальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, состоящая из рабочей и дополнительной, используется в тех случаях, когда требуется обеспечить повышенную электробезопасность оборудования (например, ручного электроинструмента бытовых электрических приборов и т.д.). Сопротивление двойной изоляции должно быть не менее 5 МОм, что в 10 раз пре вышает сопротивление обычной рабочей. В ряде случаев рабочую изоляцию выполняют настолько надежно, что ее электросопротивление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двойная. Такую изоляцию называют усиленной рабочей изоляцией.

    Существуют основные и дополнительные изолирующие средства. Основными называют такие электрозащитные средства, изоляция которых надежно выдерживает рабочее напряжение. Дополнительные электрозащитные средства усиливают изоляцию человека от токопроводящих частей и земли. В табл. 20.2 приведены основные сведения об изолирующих электрозащитных средствах.

    Неизолированные токопроводящие части электроустановок, работающих под любым напряжением, должны быть надежно ограждены или расположены на недоступной высоте, чтобы исключить случайное прикосновение к ним человека. Конструктивно ограждения изготавливают из сплошных металлических листов или металлических сеток.

    Для предупреждения об опасности поражения электрическим током используют различные звуковые, световые и цветовые сигнализаторы, устанавливаемые в зонах видимости и слышимости персонала. Кроме того, в конструкциях электроустановок предусмотрены блокировки - автоматические устройства, с помощью которых преграждается путь в опасную зону или предотвращаются неправильные, опасные для человека действия. Блокировки могут быть механические (стопоры, защелки, фигурные вырезы), электрические или электромагнитные. Для информации персонала об опасности служат предупредительные плакаты, которые в соответствии с назначением делятся на предостерегающие, запрещающие, разрешающие и напоминающие. Части оборудования, представляющие опасность для людей, окрашивают в сигнальные цвета и на них наносят знак безопасности (в соответствии с ГОСТом 12.4.026-76 «Цвета сигнальные и знаки безопасности»). Красным цветом окрашивают кнопки и рычаги аварийного отключения электроустановок.

    Таблица 2. Классификация изолирующих электрозащитных средств

    Для уменьшения опасности поражения током людей, работающих с переносным электроинструментом и осветительными лампами, используют малое напряжение, не превышающее 42 В. В ряде случаев, например, при работе в металлическом резервуаре, для питания ручных переносных ламп используют напряжение 12 В.

    Для повышения безопасности проводят электрическое разделение сетей на отдельные короткие электрически не связанные между собой участки с помощью разделяющих трансформаторов. Такие разделенные сети обладают малой емкостью и высоким сопротивлением изоляции. Раздельное питание используют при работе с переносными электрическими приборами, на строительных площадках, при ремонтах на электростанциях и др.

    При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряжения, достаточные для поражения людей или возникновения пожара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным заземлением, занулением и защитным отключением.

    Защитное заземление - это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электрооборудования, которые в обычном состоянии не находятся под напряжением, но могут оказаться под ним при случайном соединении их с токоведущими частями.

    Если произошло замыкание и корпус электроустановки оказался под напряжением, то прикоснувшийся к нему человек попадает под напряжение прикосновения пр ), которое определяется выражением:

    (9)

    где V 3 - полное напряжение на корпусе электроустановки, В;

    - потенциал поверхности земли или пола, В.

    Таким образом, напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно может коснуться человек.

    Рассмотрим схему действия защитного заземления на примере трехфазной сети с изолированной нейтралью (рис. 3).

    Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по Формуле:

    где а пр - коэффициент напряжения прикосновения или просто коэффициент прикосновения (а пр < 1 и зависит от вида заземлителя);

    Iз - ток замыкания, А;

    Rз - сопротивление защитного заземления, Ом.

    Ток, проходящий через тело человека, попавшего под напряжение прикосновения (I А чел, А), составит:

    где Rс - сопротивление растеканию тока в земле, зависящее от удельного сопротивления земли и сопротивления подошвы обуви человека, Ом.

    Если человек находится в условиях высокой влажности (Rс -> 0), предыдущую формулу можно упростить:

    Рассчитаем I А чел для случая, если Iз= 4 А, Rз = 4 Ом и апр = 0,4 (контурный заземлитель):

    Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).

    Таким образом, принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.

    Защитному заземлению (занулению) подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников.

    Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности заземляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.

    Заземляющее устройство - это совокупность заземлителей - металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 4).

    Контурное заземляющее устройство (рис. 5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.

    Заземлители бывают искусственные, которые используются только для целей заземления, и естественные, в качестве которых используют находящиеся в земле трубопроводы (за исключением трубопроводов горючих жидкостей или газов), металлические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосовой ткани.

    Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать:

    4 Ом - в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ*А и менее, то сопротивление заземляющего устройства может достигать 10 Ом;

    0,5 Ом - в установках, работающих под напряжением выше 1000 В с эффективно заземленной нейтралью. Наибольшее сопротивление заземляющего устройства (R , Ом) не должно быть более 250/ Iз (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для ус­тановок напряжением до 1000 В, R не должно быть более 125/ Iз (но не более 4 или 10 Ом соответственно). В этих формулах Iз - ток замыкания на землю, А.

    Защитное зануление предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, работающих под напряжением до 1000 В, так как в этих сетях использование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.

    Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напряжением до 1000 В с заземленной нейтралью (рис. 6).

    Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (Iз, А), протекающего в сети, определится из следующей зависимости:

    (14)

    где Vф - фазное напряжение, В;

    Ro - сопротивление заземления нейтрали, Ом;

    - сопротивление корпуса электроустановки, Ом.

    При этом на корпусе электроустановки возникает напряжение относительно земли (Vк), определяемое следующей формулой:

    (15)

    Рассчитаем величину тока короткого замыкания (1к, А) для значений V ф = 220 В и R 0 = = 4 Ом:

    Ток короткого замыкания / 3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отключиться. Корпус электроустановки находится под опасным напряжением. Если человек случайно прикоснется к корпусу электроустановки, находящейся под этим напряжением, то ток, протекающий через тело человека, составит:

    (17)

    где а пр - коэффициент напряжения прикосновения.

    Если а пр = 1 и V K = 110 В, то I чел = 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому является смертельно опасным. Таким образом, защитное заземление в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.

    Занулением называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предохранители, автоматы и др.). Зануление - это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напряжением (рис. 7).

    Проводник (1), который соединяет зануляемые части элекроустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I - II - III - IV - V), чтобы данный ток был достаточен для быстрого отключения повреждения от сети. Это достигается срабатыванием элемента защиты сети от тока короткого замыкания (на рисунке этот элемент обозначен цифрой 2).

    Цепь зануления I - II - III - IV - V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замыкания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатывние элементов защиты.

    Для устранения опасности обрыва нулевого провода устраи­вают его повторное многократное рабочее заземление через ка­ждые 250 м.

    Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия:

    I K з >k I HOM , (18)

    где Iном - номинальное значение тока, при котором происходит срабатывание элемента защиты;

    k - коэффициент, характеризующий кратность тока короткого за­мыкания относительно номинального значения тока, при котором срабатывает элемент защиты.

    Время срабатывания элементов защиты зависит от силы тока. Так, для плавких предохранителей и тепловых автоматов при k = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3-0,2 с. Электромагнитный автоматический выключатель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями k должен находиться в пределах 1,2-3, а во взрывоопасных помещениях - k = 1,4-6.

    Еще одна система защиты - защитное отключение - это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.

    Основная характеристика этой системы - быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рис. 20.8.

    При замыкании фазного провода на заземленный или зануленный корпус электроустановки на нем возникает напряжение корпуса V K . Если оно превышает заранее установленное предельно допустимое напряжение V K доп (т. е. если V K > У к доп), срабатывает защитное отключающее устройство. Схема работает следующим образом.

    Вследствие разности потенциалов между корпусом электроустановки 1 и землей возникает ток I р, который, проходя через реле 5, замыкает его контакты, подавая питание на отключающую катушку 3. Под влиянием возникшего электромагнитного поля внутрь нее втягивается сердечник 4, вызывая отключение автоматического выключателя 2, и установка обесточивается.

    В передвижных установках напряжением до 1000 В;

    Для отключения электрооборудования, удаленного от источника питания, как дополнение к занулению;

    В электрифицированном инструменте как дополнение к| защитному заземлению или занулению;

    В скальных и мерзлых грунтах при невозможности выполнить необходимое заземление.

    1 - корпус электроустановки; 2 - автоматический выключатель; 3 - отключающая катушка; 4 - сердечник катушки; 5 - реле максимального

    напряжения; R з - сопротивление защитного заземления; I 3 - ток замыкания; I p - ток, протекающий через реле; R 1 - сопротивление вспомогательного заземления

    Рис. 8. Схема защитного отключения

    Рассмотрим кратко организационные мероприятия, обеспечивающие безопасную эксплуатацию электроустановок. К ним относятся оформление соответствующих работ нарядом или распоряжением, допуск к работе, надзор за проведением работ, строгое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.

    Нарядом для проведения работы в электроустановках называют составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.

    Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы выполняют по распоряжению.

    К организационным мероприятиям также относятся обучение персонала правильным приемам работы с присвоением работникам, обслуживающим электроустановки, соответствующих квалификационных групп. Сведения о квалификационных груп­пах персонала представлены в табл. 3.

    В ряде случаев существенную опасность для человека представляет статическое электричество, под которым понимают совокупность явлений, связанных с возникновением, сохране­нием и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт. Воздействие статического электричества на организм человека проявляется в виде слабого длительно протекающего тока либо в форме кратковременного разряда через тело человека, в результате чего может произойти несчастный случай.

    Вредное воздействие на организм человека оказывает и электрическое поле повышенной напряженности. Оно вызывает функциональные изменения центральной нервной, сердечнососудистой и некоторых других систем организма.

    Защиту от статического электричества осуществляют по двум основным направлениям: уменьшение генерации электрических зарядов и устранение зарядов статического электричества. Для реализации первого направления необходимо правильно подбирать конструкционные материалы, из которых изготавливаются машины, агрегаты и прочее технологическое оборудование. Эти материалы должны быть слабо электризующимися или неэлектризующимися. Например, синтетический материал, состоящий на 40% из нейлона и 60% дакрона, не электризуется при трении о хромированную поверхность.

    Таблица 3. Квалификационные группы персонала, обслуживающего электроустановки

    Для снятия зарядов статического электричества с поверхности технологического оборудования его обязательно заземляют.

    Кроме перечисленных способов защиты от статического электричества большое значение имеет снижение удельного поверхностного электрического сопротивления перерабатываемых материалов. Это достигается повышением относительной влажности в помещении, где производится обработка поглощающих воду материалов (древесины, бумага, хлопчатобумажной ткани и др.), до 65-70%, нанесением на их поверхность специальных антистатических составов, введением в состав твердых диэлектриков электропроводящих материалов (графита, углеродных волокон, алюминиевой пудры и т.д.). Существуют и другие методы защиты от статического электричества.

    Содержание:

    Согласно российской статистики, количество смертельных поражений в результате воздействия электрического тока составляют примерно 2,7% от общего количества всех смертельных случаев. Чаще всего причиной травматизма становятся электроустановки, работающие под напряжением до 1000 вольт. Это обусловлено их широким применением и контактами с ними большого количества людей, не имеющих специальной подготовки в области электротехники.

    Опасное состояние электрооборудования невозможно определить без специальных приборов. Поэтому при работе с ним огромное значение приобретают средства защиты от поражения электрическим током.

    Воздействие тока на человеческий организм

    Для того чтобы правильно использовать защитные средства, необходимо знать, какое влияние оказывает электрический ток на человека. Прежде всего, человеческий организм подвергается термическому, биологическому и химическому воздействию. Довольно часто оно сопровождается вторичными травмами. Все это приводит не только к местным повреждениям тканей, но и к общему нарушению функций организма.

    В результате биологического воздействия страдают жизненно важные органы, такие как сердечно-сосудистая и центральная нервная система. В основе их нормального функционирования лежат электрические процессы, поэтому внешнее действие электрического тока приводит к разрушению и физиологической несовместимости с ним.

    Высокочастотные токи могут оказывать термическое воздействие. Источниками могут стать металлические предметы и резисторы, нагретые током, оголенные токоведущие части, электрическая дуга и другие факторы. Под действием тока организм человека подвергается химическому воздействию. В его состав входят полярные и неполярные молекулы, анионы и катионы. Все они совершают хаотические непрерывные тепловые движения, обеспечивающие жизнедеятельность всех органов и систем. Под хаотическое движение заменяется строго ориентированным перемещением ионов и молекул, что приводит к нарушению нормальной работе организма.

    Как избежать поражения электротоком

    Мероприятия по обеспечению электробезопасности определены в Правилах устройства электроустановок (ПУЭ). В первую очередь блокируются и ограждаются токоведущие части, ограничивается свободный доступ к ним. Данные средства очень эффективны при случайном попадании в опасную зону или, когда человек соприкоснулся с токоведущими частями оборудования.

    В помещениях, где находятся , выделяются опасные зоны путем установки ограждений, высотой не менее 1,7 м. Ограждение открытых площадок должно иметь высоту 2 метра и более. Система блокировки предусматривает определенные действия по отключению или снятию напряжения с токоведущих частей. В результате, человек просто не сможет попасть в опасную зону. Обычно электроустановки блокируются во время открытия дверей, снятия ограждений и других работ, в процессе которых возникает свободный доступ к опасным местам.

    Одной из действенных мер является использование малого напряжения, до 42 ватт. Оно применяется в переносном и местном освещении, в ручном инструменте и других местах. Кроме того, обеспечивается местное стационарное освещение в помещениях с повышенной и высокой степенью опасности. Замкнутые металлические емкости освещаются светильниками, напряжением, не превышающим 12 вольт.

    Довольно часто используется метод электрического разделения сетей на отдельные участки. С этой целью применяются разделительные трансформаторы, разделяющие сети с нейтралью и сети, подающие питание к приемнику. Сети питания и приемника связаны между собой с помощью магнитных полей. При этом сам приемник и участок его сети не связаны с землей. Трансформатор обеспечивает питание лишь одного приемника, при силе тока, не превышающей 15 ампер.

    Корпуса приборов и установок оборудуются защитным заземлением. В этом случае их нетоковедущие металлические части соединяются с землей с помощью специальных конструкций. Данные системы устраняют опасность поражения током, если человек неосторожно прикоснулся к токоведущим частям, находящимся под напряжением.

    Если возникла опасность поражения электрическим током, применяется защитное отключение сети в период времени, не превышающий 0,2 секунды. Для этих целей используются специальные устройства защитного отключения. Они оборудуются чувствительным элементом, реагирующим на изменяющиеся параметры подконтрольного напряжения. В результате, происходит отключение необходимого участка цепи. Срабатывание УЗО происходит в случае непосредственного касания человеком токоведущих частей.

    Специальные защитные средства

    Помимо общих мероприятий, существуют конкретные средства, защищающие от поражения электрическим током. По своему назначению все средства могут быть изолирующими, ограждающими и вспомогательными. Основной функцией изолирующих средств является изоляция людей от токоведущих частей установок, находящихся под напряжением. Кроме того, обеспечивается изоляция от земли при одновременном соприкосновении с токоведущими и заземляющими частями.

    Основные изолирующие средства защиты, применяемые в установках до 1000 вольт, состоят из диэлектрических перчаток, клещей для измерения тока и замены предохранителей, слесарно-монтажного инструмента, оборудованного изолирующими рукоятками, указателей напряжения.

    Для электроустановок с напряжением более 1000 вольт в качестве основных защитных средств используются измерительные и изолирующие штанги, указатели напряжения и токоизмерительные клещи. Кроме того, применяются различные виды съемных изолирующих лестниц и вышек. Дополнительные изолирующие средства представлены ботами, галошами, специальными подставками с фарфоровыми изоляторами.

    Основным назначением ограждающих защитных устройств является временное ограждение токоведущих частей, которые находятся под напряжением. Чаще всего практикуется использование барьеров, щитов, ограждений в виде клеток. Применение временных полностью исключает возникновение напряжения на отключенном оборудовании.

    Назначение вспомогательных средств состоит в защите работающего персонала от случайных падений с высоты, повреждений глаз и других жизненно важных органов. С этой целью применяются страхующие канаты, когти, предохранительные пояса, рукавицы, защитные очки, специальные костюмы и прочее.

    При составлении проекта вопросы безопасности обязательно согласовываются со всеми надзорными органами, в строгом соответствии с ПУЭ. Однако в процессе эксплуатации соблюдение мер электробезопасности зависит от конкретных людей - организаторов и исполнителей работ. Поэтому средства защиты от поражения электрическим током приобретают огромное значение в деле обеспечения безопасных условий труда.

    Основными техническими средствами защиты человека от поражения электрическим током, используемыми отдельно или в сочетании друг с другом, являются: защитное заземление, зануление, защитное отключение, электрическое разделение сети, малое напряжение, электрозащитные средства, уравнивание потенциалов, двойная изоляция, предупредительная сигнализация, блокировка, знаки безопасности.

    Защитное заземление – это преднамеренное электрическое соединение с грунтом Земли металлических нетоковедущих элементов электроустановок, которые в аварийных ситуациях могут оказаться под напряжением.

    Область применения защитного заземления – электроустановки напряжениями до 1000 В, питающиеся от СИН. При этом в помещениях без повышенной опасности защитное заземление является обязательным при номинальном напряжении электроустановок 380 В и выше переменного тока и 440 В и выше постоянного тока, а в помещениях с повышенной опасностью и особо опасных, а также в наружных установках - при напряжении выше 42 В переменного и выше 110 В постоянного тока.

    Защитное заземление специально предназначено для обеспечения электробезопасности и позволяет уменьшить напряжение, приложенное к телу человека, до длительно допустимого значения . Защитному заземлению подлежат доступные для прикосновения человека металлические нетоковедущие элементы электроустановок, которые могут оказаться под напряжением, например, из-за повреждения изоляции фазного проводника сети. Схема защитного заземления представлена на рис. 4.10.

    На рисунке пунктирными линиями показано эквивалентное сопротивление Z из /3 , которое заменяет комплексные сопротивления изоляций фаз в случае их равенства, но подключено к нейтрали N электрической сети.

    В случае пробоя фазы на корпус ток замыкания определяется по формуле

    в которой влиянием параллельного соединения R з и R h можно пренебречь (R з ||R h << Z из /3 ), т. к. R з << Z из . В результате ток замыкания на землю в СИН напряжением до 1000 В практически не превышает 5 А, а в большинстве случаев он во много раз меньше.

    Для обеспечения приемлемой безопасности прикосновения к повреждённой электроустановке в СИН (замыкание фазы на корпус) необходимо обеспечить в любое время года достаточно малую величину сопротивления заземления.

    Защитное заземление осуществляют с помощью заземляющего устройства , которое представляет собой совокупность заземлителей (естественные или искусственные) и заземляющих проводников.

    Естественные заземлители – это непосредственно контактирующие с грунтом электропроводящие элементы коммуникаций, зданий и сооружений, специально не предназначенные для целей заземления, но используемые как заземлители. К ним относятся арматура железобетонных фундаментов, металлические водопроводные трубы, проложенные в земле, обсадные трубы скважин. Запрещается использовать в качестве естественных заземлителей трубопроводы горючих жидкостей, взрывоопасных или горючих газов.


    Искусственные заземлители – это предназначенные для устройства заземления стальные электроды (трубы, стержни, уголки) длиной до нескольких метров, имеющие непосредственный контакт с грунтом. Их применяют, если естественные заземлители отсутствуют или их сопротивления растеканию тока не удовлетворяют требованиям.

    Заземляющие проводники – это электрические проводники, соединяющие заземлители с заземляемыми элементами электроустановок.

    ПУЭ и ГОСТ 12.1.030-81* устанавливают, в частности, что в сетях с U ф = 220 В сопротивление заземляющего устройства не должно превышать 4 Ом (R з ≤ 4 Ом ). Если мощность источника электроэнергии (трансформатора, генератора) не превышает 100 кВА, тоR з ≤ 10 Ом . Таким образом обеспечивают напряжение на корпусе аварийной электроустановки, не превышающее 20 В, что считается допустимым.

    Зануление – это преднамеренное электрическое соединение нетоковедущих частей электроустановок, которые в аварийных ситуациях могут оказаться под напряжением, с глухозаземлённой нейтралью электрической сети с помощью нулевого защитного проводника (НЗП).

    Область применения зануления – электроустановки напряжениями до 1000 В, питающиеся от СЗН. При этом в помещениях без повышенной опасности зануление является обязательным при номинальном напряжении электроустановок 380 В и выше переменного тока и 440 В и выше постоянного тока, а в помещениях с повышенной опасностью и особо опасных, а также в наружных установках - при напряжении выше 42 В переменного и выше 110 В постоянного тока. Схема варианта зануления в СЗН приведена на рис. 4.11, где Пр1 и Пр2 – плавкие предохранители линии питания и электроустановки.

    Нулевой защитный проводник НЗП необходимо отличать от нулевого рабочего проводника N. Нулевой рабочий проводник при необходимости может быть использован для питания электроустановок. В реальной сети он может быть совмещён с НЗП, за исключением случая питания переносных электроприёмников, если он соответствует дополнительным требованиям, предъявляемым к НЗП. Должна быть обеспечена гарантированная непрерывность НЗП на всём протяжении от зануляемого элемента до нейтрали источника питания. Это обеспечивается отсутствием элементов защиты (плавких предохранителей и автоматических выключателей) а так же разного рода разъединителей. Все соединения НЗП должны быть выполнены на основе сварки или быть резьбовыми. Полная проводимость НЗП должна составлять не менее 50 % от проводимости фазного проводника.

    При замыкании одной из фаз на зануленный корпус электроустановки возникает контур короткого замыкания, образуемый источником фазного напряжения и комплексными сопротивлениями фазного (Ż ф) и нулевого защитного (Ż нзп) проводников, величина тока в котором гарантирует быстрое срабатывание ближайшего к электроустановке элемента защиты (Пр2). С целью дополнительного повышения уровня электробезопасности, например, при обрыве НЗП, его повторно заземляют (на рис. 4.11 R п – сопротивление повторного заземлителя). При отсутствии R п напряжение на корпусе повреждённой установки может превышать 0,5U ф, а в случае применения повторного заземлителя оно может быть несколько снижено.

    Таким образом, при занулении безопасность человека, касающегося корпуса повреждённой установки, обеспечивается за счёт уменьшения времени воздействия опасного напряжения, действующего до момента срабатывания элемента защиты.

    Для того чтобы обеспечить быстрое отключение аварийной установки, ток короткого замыкания согласно требованиям ПУЭ должен не менее чем в 3 раза превышать номинальный ток плавкой вставки ближайшего предохранителя или в 1,4 раза превышать ток уставки автоматического выключателя.

    В СЗН с занулением нельзя заземлять корпус установки, не присоединив его прежде к НЗП.

    Защитное отключение - это автоматическое отключение всех фаз контролируемого участка сети, обеспечивающее безопасные для человека сочетания тока и времени его воздействия при возникновении опасности поражения человека током (ПУЭ-99). Такого рода ситуации возникают, например, в случаях замыканий на землю, снижения сопротивлений изоляции, неисправностях устройств заземления или зануления, а также при однофазном прикосновении человека к токоведущим элементам установок. Защитное отключение может использоваться как самостоятельная мера защиты, а также в сочетании с занулением или защитным заземлением для обеспечения большей безопасности.

    Устройство защитного отключения (УЗО) может быть использовано в сетях с любым режимом нейтрали. Оно подключено к контролируемой электроустановке и при недопустимом ухудшении параметров электробезопасности отключает её от источника питания. Принцип защиты с помощью УЗО заключается в уменьшении времени протекания опасного тока через человека. Эффективность УЗО определяется его быстродействием. В любом случае сочетание напряжения прикосновения, действующего до момента отключения, и времени срабатывания должно соответствовать требованиям ГОСТ 12.1.038-82*.Все УЗО строятся по одному функциональному принципу (рис. 4.12). Датчик Д реагирует на изменения одного или нескольких параметров Uэу , характеризующих электробезопасность. Его выходной сигнал U д пропорционален используемому входному сигналу УЗО, на который оно реагирует. В формирователе аварийного сигнала Uас (ФАС) сигнал датчика U д сравнивается с установленным уровнем срабатывания Uп . Он пропорционален уставке УЗО, т.е. значению входного сигнала устройства, при котором оно срабатывает. Если U д >Uп , то сигнал U АС через элемент согласования (по мощности, напряжению) ЭС приводит к размыканию контактов отключающего устройства ОУ. Практическое разнообразие УЗО определяется используемыми входными сигналами и выбранными конструктивными элементами. Входными сигналами могут являться ток нулевой последовательности (при несимметрии фазных токов утечки), напряжение нулевой последовательности (при несимметрии напряжений фаз относительно земли), напряжение корпуса установки относительно земли, ток замыкания (утечки) на землю.

    Электрическое разделение сети . Реальные электрические сети могут иметь глухозаземлённую нейтраль, быть протяжёнными и разветвлёнными, что резко увеличивает опасность поражения при однофазном прикосновении человека. На рис. 4.13 показан пример разветвлённой однофазной сети, содержащей N ответвлений с соответствующими сопротивлениями изоляции. Результирующее сопротивление изоляции Z из сети определяется как результат параллельного соединения сопротивлений изоляции N отдельных участков и сопротивлений изоляции Z ЭУ электроустановок. Оно может оказаться недостаточным для обеспечения приемлемой безопасности однофазного прикосновения и может составлять, десятки кОм.

    С целью повышения без­опасности в таких случаях применяют электрическое раз­деление разветвлённой сети на ряд участков с помощью специальных разделительных трансформаторов РТ (рис. 4.14). От каждого из них разрешается питание только одного электроприёмника с номинальным током элемента защиты не более 15 А. Участок сети, подключенный к вторичной обмотке РТ, имеет малые протяжённость и разветвлённость. Поэтому легко обеспечивается большое сопротивление изоляции проводников питания относительно земли. Разделительные трансформаторы могут входить в состав, блоков питания (преобразователей напряжения) радиоэлектронных устройств. Следует иметь в виду, что выводы вторичной обмотки РТ должны быть изолированы от земли.

    Применение малых напряжений . Существенное повышение уровня электробез­опасно­сти может быть достигнуто путём уменьшения рабочих напряжений электроустановок. Если номинальное напряжение электроустановки не превышает длительно допустимой величины напряжения прикосновения, то даже одновременный контакт человека с токоведущими частями разных фаз может считаться относительно безопасным.

    Малым называется напряжение не более 42 В переменного и не более 110 В постоянного тока, применяемое в целях уменьшения опасности поражения электрическим током. Наибольшая степень безопасности достигается при напряжениях до 12 В, т. к. при таких напряжениях сопротивление тела человека обычно не менее 6 кОм и, следовательно, ток, проходящий через тело человека, не превысит 2 мА. Такой ток можно считать условно безопасным. В производственных условиях для повышения безопасности эксплуатации переносных электроустановок применяются малые напряжения 36 В (в помещениях с повышенной опасностью) и 12 В (в особо опасных помещениях). Однако в любом случае малые напряжения являются лишь относительно безопасными, т.к. в худшем случае ток через тело человека может превысить значение порогового неотпускающего.

    Источниками малого напряжения являются гальванические элементы, аккумуляторы, преобразователи напряжения или трансформаторы. Получение малых напряжений с помощью автотрансформаторов не допускается , т. к. токоведущие элементы сети малого напряжения в этом случае гальванически связаны с основной электрической сетью.

    Область применения малых напряжений ограничивается в основном ручным электрифицированным инструментом, переносными лампами, светильниками местного освещения в помещениях, как с повышенной опасностью, так и особо опасных.

    Электрозащитные средства - это средства индивидуальной защиты, служащие для защиты людей от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля. По своему назначению средства защиты условно разделяют на изолирующие, ограждающие и предохранительные.

    Изолирующие средства защиты предназначены для изоляции человека от частей электроустановок, находящихся под напряжением, и от земли. Различают основные и дополнительные изолирующие средства. Основные изолирующие средства имеют изоляцию, способную длительное время выдерживать рабочее напряжение электроустановки, и, следовательно, с их помощью можно касаться токоведущих частей, находящихся под напряжением. Основными изолирующими средствами для электроустановок напряжением до 1000 В служат изолирующие штанги, изолирующие и электроизмерительные клещи, диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими рукоятками, указатели напряжения. Дополнительные изолирующие средства применяют лишь в комплекте с основными средствами для обеспечения большей безопасности. К ним относятся диэлектрические боты и галоши, изолирующие подставки и коврики. Все изолирующие средства должны подвергаться испытаниям после изготовления и периодически в процессе эксплуатации, о чём на них делается соответствующая отметка.

    Ограждающие защитные средства предназначены для временного ограждения токоведущих частей, находящихся под напряжением (изолирующие накладки, щиты, барьеры, ограждения-клетки), а также для предотвращения появления опасного напряжения на отключенных токоведущих частях (переносные заземляющие устройства).

    Предохранительные защитные средства служат для защиты персонала от факторов, сопутствующих его работе с электроустановками. К ним относятся средства защиты от падения с высоты (предохранительные пояса), при подъёме на высоту (монтёрские когти, лестницы), от световых, тепловых, механических, химических воздействий (защитные очки, щитки, рукавицы) и электромагнитных полей (экранирующие каски, костюмы).

    Уравнивание потенциалов применяют в помещениях, имеющих заземлённые или занулённые электроустановки для повышения уровня безопасности. При этом к сети заземления или зануления подключают элементы производственных конструкций, трубопроводы. С этой же целью в ванных комнатах жилых зданий металлические корпуса ванн должны быть гальванически соединены с металлическими трубами водопровода.

    Двойная изоляция представляет собой совокупность рабочей и защитной (дополнительной) изоляции, при которой доступные прикосновению металлические части электроустановки не приобретают опасного напряжения при повреждении только рабочей или только защитной изоляции. Согласно требованиям ГОСТ 12.2.006-87 двойную изоляцию обязательно должны иметь устройства бытового или аналогичного общего применения. Установки с двойной изоляцией не следует заземлять или занулять, поэтому они не имеют соответствующих присоединительных элементов. В качестве дополнительной изоляции используют пластмассовые корпуса, ручки, втулки. Если устройство с двойной изоляцией имеет металлический корпус, он должен быть изолирован от конструктивных частей установки, которые могут оказаться под напряжением (шасси, оси регуляторов, статоры электродвигателей) изолирующими элементами.

    Предупредительная сигнализация служит для выдачи сигнала опасности при приближении к частям, находящимся под высоким напряжением.

    Блокировки предотвращают доступ к неотключенным токоведущим частям электроустановки, например, при ремонте. Электрические блокировки осуществляют разрыв цепи контактами, размыкающимися при открывании аппаратурной дверцы или не позволяют её открыть, если не снято высокое напряжение с токоведущих частей. Механические блокировки имеют конструктивные элементы, не позволяющие включит аппарат при открытой крышке или открыть аппарат, когда он включен.

    Знаки и плакаты безопасности предназначены для привлечения внимания работающих к опасности поражения током, предписания, разрешения определённых действий и указаний с целью обеспечения безопасности. Они бывают запрещающими, предупреждающими, предписывающими и указательными.

    Поражение человека электрическим током происходит в случаях:

      Прикосновения к токоведущим частям электроустановок, находящихся под напряжением.

      Приближения человека на опасное расстояние к токоведущим незащищенным изоляцией частям электроустановок.

      Прикосновения человека к нетоковедущим частям электроустановок, оказавшимся под напряжением (из-за замыкания на их корпус).

      Ошибочного принятия находящегося под напряжением оборудования как отключенного.

      Повреждения изоляции.

      Удара молнии.

      Действия электрической дуги.

      Освобождения другого человека, находящегося под напряжением.

      В результате возникновения токового напряжения на поверхности земли из-за замыкания фазного провода на землю, что привело к растеканию тока по земле. Оказавшийся в зоне поражения человек попадает под шаговое напряжение, которое по мере приближения к проводу принимает опасные значения. Шаговое напряжение зависит от расстояния между точками соприкосновения человека с землей. Уходить от упавшего провода следует мелкими шажками. На расстоянии более 20 м от провода напряжение уменьшается до нуля.

    К основным мерам защиты относятся:

      Средства коллективной защиты.

      Защитное заземление, зануление, отключение.

      Использование малых напряжений.

      Применение изоляции.

    Средства коллективной защиты, заключающиеся в обеспечении недоступности токоведущих частей, находящихся под напряжением. Это применение оградительных, блокировочных, сигнализирующих устройств, знаков безопасности. Для исключения опасности прикосновения к токоведущим частям электрооборудования необходимо обеспечить их недоступность. Это достигается посредством ограждения и расположения токоведущих частей на недоступной высоте или в недоступном месте.

    Защитное заземление – это преднамеренное соединение металлических нетоковедущих частей электроустановки с землей. Электрическое сопротивление такого соединения должно быть минимальным (не более 4 Ом для сетей с напряжением до 1000 В. и не более 10 Ом для остальных сетей). Различают 2 типа заземления: выносное и контурное . Выносное заземление характеризуется тем, что его заземлитель (элемент заземляющего устройства, непосредственно контактирующий с землей) вынесен за пределы площадки, на которой установлено оборудование. Контурное заземление состоит из нескольких соединенных заземлителей, размещенных по контуру площадки с защищаемым оборудованием. Такой тип заземления применяют в установках выше 1000 В. В электроустановках до 1000 В сечение заземляющего проводника должно быть не менее 4 мм². Заземлять электрические приборы строго запрещено на батареи отопления и водопроводные трубы, поскольку при контакте с ними ничего не подозревающий человек получит травму. На рис. 1 приведена принципиальная схема защитного заземления:

    Рис. 1. Принципиальная схема защитного заземления:

    1 - заземляемое оборудование, 2 - заземлитель защитного заземления, 3 - заземлитель рабочего заземления, R 3 - сопротивление защитного заземления, R O - сопротивление рабочего заземления.

    Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно считается основным средством обеспечения электробезопасности в трехфазных сетях. Смысл зануления состоит в том, что оно превращает замыкание фазы на корпус в однофазное короткое замыкание, в результате которого срабатывает защита (перегорает предохранитель), отключая поврежденный участок сети. Принципиальная схема зануления приведена на рис. 2:

    Рис. 2. Принципиальная схема зануления:

    1 - корпус однофазного приемника тока; 2 - корпус трехфазного приемника тока; 3 - предохранители; 4 - заземлители; I к - ток однофазного короткого замыкания; Ф - фазный провод; U ф - фазное напряжение; HР - нулевой рабочий проводник; HЗ - нулевой защитный проводник; КЗ - короткое замыкание

    К устройствам защитного отключения относятся приборы, обеспечивающие автоматическое отключение электроустановок при возникновении опасности поражения током. Они состоят из датчиков, преобразователей и исполнительных органов.

    Малое напряжение - это напряжение не более 42 В., применяемое в цепях уменьшения опасности поражения электрическим током. Наибольшая степень безопасности достигается при напряжениях до 10 В. В производстве чаще используют сети напряжением 12 В. и 36 В. Для создания таких напряжений используют понижающие трансформаторы.

    Изоляция – это слой диэлектрика, которым покрывают поверхность токоведущих элементов, или конструкция из непроводящего материала, с помощью которых токоведущие части отделяются от остальных частей электрооборудования. Выделяют следующие виды изоляции:

    - рабочая . Это электрическая изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током.

    - дополнительная. Это электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

    - двойная. Это изоляция, состоящая из рабочей и дополнительной изоляции.

    - усиленная. Это улучшенная рабочая изоляция, которая обеспечивает такую же защиту от поражения электрическим током, как и двойная изоляция.

    Основными изолирующими средствами защиты служат: изолирующие штанги, изолирующие измерительные клещи, указатели напряжения, диэлектрические перчатки, диэлектрические галоши, коврики и т.д. К общим мерам защиты от статического электричества можно отнести общее и местное увлажнение воздуха.