Войти
Образовательный портал. Образование
  • Манная каша на молоке: пропорции и рецепты приготовления Манная каша 1 порция
  • Суп-пюре из брокколи с сыром Рецепт крем супа из брокколи с сыром
  • Гороскоп: характеристика Девы, рождённой в год Петуха
  • Причины выброса токсичных веществ Несгораемые углеводороды и сажа
  • Современный этап развития человечества
  • Лилия яковлевна амарфий Могила лилии амарфий
  • Организации работы для поддержания соответствующих микроклиматических параметров. Мероприятия, обеспечивающие улучшение микроклимата производственных помещений. Отопопление, вентиляция, кондиционирование воздуха. Микроклимат помещения и его параметры

    Организации работы для поддержания соответствующих микроклиматических параметров. Мероприятия, обеспечивающие улучшение микроклимата производственных помещений. Отопопление, вентиляция, кондиционирование воздуха. Микроклимат помещения и его параметры

    Понятие микроклимата Микроклимат производственных помещений - метеорологические условия внутренней среды помещений, которые определяются действующими на организм человека сочетаниями температуры, влажности, скорости движения воздуха и теплового излучения; комплекс физических факторов, оказывающих влияние на теплообмен человека с окружающей средой, на тепловое состояние человека и определяющих самочувствие, работоспособность, здоровье и производительность труда.

    Параметры микроклимата В соответствии с Сан. Пи. Н 2. 2. 4. 548 – 96 «Гигиенические требования к микроклимату производственных помещений» параметрами, характеризующими микроклимат являются: Температура воздуха; Температура поверхностей (учитывается температура поверхностей ограждающих конструкций (стены, потолок, пол), устройств (экраны и т. п.), а также технологического оборудования или ограждающих его устройств); Относительная влажность воздуха; Скорость движения воздуха; Интенсивность теплового облучения.

    Параметры микроклимата Температура воздуха, измеряемая в °С, является одним из основных параметров, характеризующих тепловое состояние микроклимата. Температура поверхностей и интенсивность теплового облучения учитываются только при наличии соответствующих источников тепловыделений.

    Параметры микроклимата Влажность воздуха – содержание в воздухе водяного пара. Различают: Ø абсолютную (А); Ø максимальную (F); Ø относительную влажность (R). Скорость движения воздуха измеряется в м/с.

    Измерение параметров микроклимата В обычных условиях для измерения температуры воздуха используются термометры (ртутные или спиртовые), термографы (регистрирующие изменение температуры за определенное время) и сухие термометры психрометров.

    Измерение параметров микроклимата Для определения влажности воздуха применяются переносные аспирационные психрометры (Ассмана), реже стационарные психрометры (Августа) и гигрометры. При использовании психрометров дополнительно измеряют атмосферное давление с помощью барометров – анероидов.

    Параметры микроклимата Выделяют оптимальные и допустимые параметры микроклимата. Оптимальными микроклиматическими условиями являются такие сочетания количественных параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности. Допустимыми условиями являются такие сочетания количественных параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, но могут наблюдаться ухудшение самочувствия и снижение работоспособности.

    Параметры микроклимата В соответствии с ГОСТом 12. 1. 005 -88 различают: § холодный период года (со среднесуточной температурой наружного воздуха ниже +10°С); § теплый период года (с температурой +10°С и выше). Все категории выполняемых работ подразделяются на: легкие (энергозатраты до 172 Вт), средней тяжести (энергозатраты до 172– 293 Вт) и тяжелые (энергозатраты более 293 Вт). По количеству избыточного тепла все производственные помещения делятся на: помещения с незначительными избытками явной теплоты1 (QЯ з Т 23, 2 Дж/м c) п помещения со значительным избытком явной теплоты (QЯ Т > 23, 2 Дж/мз c).

    Src="https://present5.com/presentation/1/49716995_142312014.pdf-img/49716995_142312014.pdf-14.jpg" alt="Влияние параметров микроклимата на организм человека Повышенная влажность (φ > 85%) затрудняет теплообмен между"> Влияние параметров микроклимата на организм человека Повышенная влажность (φ > 85%) затрудняет теплообмен между организмом человека и внешней средой вследствие уменьшения испарения влаги с поверхности кожи, а низкая влажность (φ

    Мероприятия по обеспечению параметров Для обеспечения нормальных метеоусловий и поддержания теплового равновесия человека на этапах проектирования, строительства и эксплуатации используют мероприятия, которые условно можно разделить на следующие группы: 1. 2. 3. архитектурно-строительные; технические; организационные.

    Мероприятия по обеспечению параметров Архитектурно-строительные мероприятия: Рациональная планировка помещения, рабочих мест, технологического оборудования и коммуникаций; Устройство специальных тамбуров-шлюзов; Устройство солнце- ветрозащитных навесов (укрытий) для работающих на открытом воздухе; Расположение источников тепловыделения (влаги) в отдельных помещениях или на открытом воздухе.

    Мероприятия по обеспечению параметров Технические мероприятия: Применение прогрессивной технологии, механизация и автоматизация тяжелых и трудоемких работ; Устройство дистанционного управления теплоизлучающими процессами и аппаратами; Герметизация тепло- и влаговыделяющего оборудования; Теплоизоляция оборудования, аппаратов и коммуникаций, являющихся источниками излучения (температура поверхности не должна превышать 45 градусов); Устройство защитных экранов, водяных и воздушных завес; Оборудование системами аспирации источников тепло- и влаговыделения; Устройство в помещении систем вентиляции и кондиционирования воздуха; Устройство воздушного душирования; Устройство автоматически регулируемой системы отопления; Устройство для работающих на открытом воздухе обогреваемых рабочих поверхностей.

    Мероприятия по обеспечению параметров Организационные мероприятия: Организация специального режима труда и отдыха; Устройство в горячих цехах специально оборудованных комнат, кабин или мест для кратковременного отдыха с подачей в них очищенного и умеренно охлажденного воздуха (разность с температурой в помещении – не более 10 градусов); Устройство специально оборудованных комнат обогрева для работающих на открытом воздухе; Организация водно-солевого режима с целью профилактики обессолевания при сильном потовыделении; Обеспечение работающих рациональной обувью и спецодеждой; Проведение периодических медосмотров работающих; Инструктирование и обучение работающих.

    Профилактика перегревания работающих в нагревающем мик­роклимате может быть осуществлена за счет:

    Нормирования верхней границы внешней термической нагруз­ки на допустимом уровне применительно к 8-часовой рабочей смене;

    Регламентации продолжительности воздействия нагревающей среды;

    Использования специальных коллективных и индивидуальных средств защиты, направленных на уменьшение поступления теп­ла извне к поверхности тела человека и обеспечения за счет этого допустимого теплового состояния работающих;

    Применения средств, направленных на повышение тепловой устойчивости организма, в том числе за счет адаптации к терми­ческой нагрузке, улучшения функционального состояния (витаминизация, рациональный питьевой режим, фармакологические средства и др.).

    При работе в охлаждающем микроклимате должное тепловое состояние организма человека также может быть сохранено за счет регламентации времени работы. Период непрерывного пребывания работающих в охлаждающей производственной среде в зависимо­сти от температуры воздуха должен составлять 8, 6, 4, 2 или 1 ч.

    Кроме того, для защиты от охлаждения рабочие должны быть снабжены комплектом специальной одежды для защиты от пони­женных температур.

    В зимний и переходный периоды года необходимо защищать рабочие места в производственных помещениях от потоков хо­лодного воздуха, поступающих через двери, ворота устройством шлюзов, воздушных завес.

    В помещениях больших размеров или на специальном транс­портном оборудовании (подъемные краны и др.) целесообразно облучение передней поверхности тела источником инфракрасного излучения малой интенсивности (0,3 - 0,5 кал/см 2 /мин) на месте работы. В тех случаях, когда подобные меры невозможны, следует устраивать обогреваемые помещения для периодического пребы­вания там работающих.

    2.6. Производственный травматизм и вопросы охраны труда на промышленных предприятиях.

    Под производственной травмой понимают повреждение, по­влекшее за собой нарушение анатомической целостности ткани (органа) или нарушение нормального функционирования органа или организма, внезапно возникшее на территории предприятия или учреждения под воздействием внешних факторов. К произ­водственным относятся все случаи травм при выполнении человеком порученной ему работы на территории предприятия, а так­же травмы, полученные в пути на работу и с работы.



    Травмы могут быть вызваны механическими, термическими и химическими факторами.

    К травмам относятся раны, ушибы, переломы костей, отрыв частей тела (пальцев, руки) и др.; ожоги и отморожения; пораже­ния электрошоком, химическими соединениями; кроме того, раз­рыв барабанной перепонки от воздействия интенсивного шума, электроофтальмия у электросварщиков и т.д.

    Причины возникновения производственного травматизма де­лятся на две группы: организационно-технические и санитарно-гигиенические.

    Организационно-техническими причинами могут быть: конструк­тивные недостатки оборудования с позиций техники безопаснос­ти, недостаточная механизация производственных процессов, от­сутствие или неисправное состояние оградительной техники, не­исправное состояние технологического оборудования и инстру­мента, неудовлетворительный инструктаж и обучение работаю­щих безопасным методам работы, неиспользование средств ин­дивидуальной защиты и др.

    Причинами травматизма являются также неблагоприятные са­нитарно-гигиенические условия труда . К ним относятся производ­ственные факторы внешней среды, вредно действующие на организм: неблагоприятные условия производственного микроклима­та, недостаточное и нерациональное освещение, воздействие вы­сокого уровня шума и вибрации, наличие в воздухе производ­ственных помещений токсических веществ и др. Эти факторы мо­гут косвенно способствовать возникновению травм, вызывая у работающих понижение внимания, быстроты и четкости реакции, ухудшение видимости, утомление, болезненное состояние и т.д. В 2000 г. в РФ работали в условиях, не отвечающих санитарно-гигиеническим нормам в промышленности - 21,7 % работников, в строительстве - 10,1 %, на транспорте - 12,4 % и т.д.

    В последние 10 лет в РФ число случаев производственного трав­матизма уменьшилось почти в три раза. Если в 1990 г. численность пострадавших составляла 432,4 тыс. чел.,то в 2000 г. - 151,8 тыс. чел.

    В значительной мере снижение производственного травматиз­ма обусловлено существенным спадом производства в стране.

    Для выяснения и изучения причин производственного травма­тизма здравпунктами и медико-санитарными частями предприя­тий осуществляется регистрация и учет всех травм как с потерей, так и без потери трудоспособности. Травмы с потерей трудоспо­собности регистрируются также администрацией производства.

    Медико-санитарная часть должна ежемесячно проводить ана­лиз травматизма и представлять его администрации для выработ­ки действенных мер профилактики.

    К числу радикальных мер профилактики производственного травматизма относятся механизация и автоматизация производ­ства, внедрение современных технологий.

    Не меньшее значение имеют правильная организация труда, рабочего места, исправность оборудования и инструмента, в не­обходимых случаях - обязательное использование надежных ограж­дений движущихся опасных частей оборудования или экранов для защиты станочника от отлетающей стружки.

    Большую роль в профилактике травматизма играет постоянное использование спецодежды, спецобуви, защитных очков и других средств индивидуальной защиты.

    Очень важно повышение квалификации работающих, хорошее знание ими правил безопасности работы.

    Действенной мерой профилактики является пропаганда меро­приятий по борьбе с травматизмом.

    Огромное значение имеет технический надзор за выполнением мероприятий по технике безопасности, который ежедневно осу­ществляется начальниками цехов, участков, мастерами.

    Снижению травматизма способствует улучшение санитарных условий труда (обеспечение оптимальной освещенности, сниже­ние уровней шума, улучшение микроклимата на производстве и пр.).

    Необходима правильная организация медицинского обслужи­вания пострадавших при производственных травмах для макси­мального ускорения восстановления здоровья рабочих и преду­преждения у них осложнений и инвалидности.

    Трудовое законодательство в России охватывает все основные правовые нормы, касающиеся рабочего времени, охраны труда женщин, лиц пожилого возраста, подростков, техники безопасности на производстве и т.д.

    Контрольные вопросы:

    • Физические факторы воздуха, формирующие микроклимат на производстве? Их гигиеническое значение?
    • Пути передачи тепла. Механизмы терморегуляция человека?
    • Перегревающий и охлаждающий микроклимат? Патофизиология и клинические проявления?
    • Классификация и характеристика микроклиматических условий труда?
    • Нормирование микроклимата на производстве лечебно-профилактических учреждениях?

    · Методы по улучшению производственного микроклимата.

    Температура воздуха в помещениях зависит от наружной температуры, теплоизолирующей способности стен, полов, перекрытий, окон и дверных проемов, мощности системы отопления.

    Производительность системы отопления проектируют с учетом теплоизолирующей способности ограждений для обеспечения оптимальной температуры в помещениях в период наиболее холодной пятидневки года.

    Если система отопления выполнена в соответствии с проектом, то отклонения температуры воздуха рабочей зоны могут происходить по следующим причинам:

    1. Плохое уплотнение (теплоизоляция) переплетов окон, дверей, ворот, стыков между наружными панелями в каркасах наружно-панельных зданий.

    2. Плохая регулировка системы отопления, в результате чего температура стояков и нагревательных приборов различна. В одних помещениях наблюдается перегрев воздуха, а в других недостаток тепла.

    3. Недостаточное количества теплоносителя (воды, пара), поступающего в систему отопления. Признаком этой причины является низкая температура стояка (ниже 70 °С) у самого дальнего нагревательного прибора.

    Нормализовать температурный режим в помещениях можно путем улучшения теплоизоляции окон, дверей, стыков между панелями, регулировки системы отопления, чтобы разность температур на входе и выходе стояков была одинаковой, подачи в систему отопления большего количества теплоносителя.

    В производственных помещениях чаще всего устраивают системы отопления совмещенные с вентиляцией. В таких системах воздух нагревают калориферами и затем подают в рабочую зону помещений. Регулировку совмещенной системы отопления производят в вентиляционных камерах, как по температуре, так и по расходу теплоносителя в калориферах с таким расчетом, чтобы температура воздуха, нагретого в калориферах, соответствовала проектной. Если это мероприятие не дает требуемого эффекта по нормализации температуры воздуха в рабочей зоне, проводят дополнительную теплоизоляцию ограждающих конструкций.

    Относительная влажность воздуха зависит от содержания паров воды в наружном воздухе и выделения влаги от технологических процессов внутри помещений. Если влажность воздуха в рабочей зоне ниже допустимой, воздух в вентиляционной камере предварительно увлажняют, разбрызгивая воду форсунками. При высокой влажности воздуха рабочей зоны принимают меры по улучшению работы местных отсосов в мокрых технологических процессах.

    Скорость движения воздуха на рабочих местах зависит от правильности устройства и регулировки работы вентиляционных систем. При отклонении скорости движения воздуха от предусмотренной санитарными нормами, необходимо проверить исправность системы и, путем открывания или закрывания шиберных заслонок на приточных вентиляционных отверстиях, установить оптимальные скорости движения воздуха на рабочих местах.

    В производственных помещениях, в которых допустимые параметры микроклимата невозможно установить из-за технологических требований к производственному процессу условия микроклимата следует рассматривать как вредные и опасные.

    В целях профилактики неблагоприятного воздействия микроклимата используются следующие защитные мероприятия:

    Естественная вентиляция (аэрация);

    Системы кондиционирования воздуха;

    Воздушное душирование рабочих мест;

    Спецодежда и другие средства индивидуальной защиты;

    Помещения для отдыха и обогревания (охлаждения);

    Компенсация одного параметра микроклимата изменением другого;

    Регламентация времени работы (сокращение рабочего дня, увеличение продолжительности отпуска, уменьшение стажа работы). Время пребывания на рабочих местах при температуре воздуха выше или ниже допустимых величин регламентируется санитарными правилами (табл. 4.5 и 4.6).

    Требования состояния воздуха рабочей зоны производственных помещений может быть обеспечено выполнением определенных мероприятий, к основным из них относятся:

    1. Механизация и автоматизация производственных процессов, дистанционное управление ими. Автоматизация процессов, сопровождающихся выделением вредных веществ, повышает производительность труда и улучшает условия труда, поскольку рабочие выводятся из опасных зон.

    2. Применение технологических процессов и оборудования, исключающих образование вредных веществ или попадание их в рабочую зону.

    Это достигается:

    Заменой токсичных веществ нетоксичными;

    Переходом с твердого и жидкого топлива на газообразное;

    Электрический высокочастотный нагрев и др.

    Защита от источников тепловых излучений.

    Интенсивность облучения рабочих в ряде случаев составляет значительную величину (до 3000 – 6000 Вт/м² и более). В этих случаях лучистый поток теплоты становится основным вредным производственным фактором.

    Способы защиты от лучистого потока теплоты и высоких температур следующие:

    Теплоизоляция нагретых поверхностей;

    Экранирование тепловых излучений;

    Применение воздушного душирования воздушной среды;

    Организация рационального отдыха в период работы.

    3. Устройство вентиляции и отопления.

    4. Применение средств индивидуальной защиты.

    МИКРОКЛИМАТ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ.

    Существенное влияние на состояние организма работника, его работоспособность оказывает микроклимат (метеорологические условия) в производственных помещениях, под которым понимают климат внутренней среды этих помещений, который определяется действующей на организм человека совокупностью температуры, влажности, скорости движения воздуха, давления и теплового излучения от нагретых поверхностей.

    В отличие от микроклимата жилых и общественных сооружений микроклимат производственных помещений характеризуется значительной динамичностью и зависит от колебаний внешних метеорологических условий и времени года, теплофизических особенностей технологического процесса, условий отопления и вентиляции.

    Микроклимат производственных помещений, в основном, влияет на тепловое состояние организма человека и его теплообмен с окружающей средой.

    1. ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ.

    Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Для того чтобы физиологические процессы в организме человека происходили нормально, тепло, которое выделяется организмом человека, должно полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреванию или к переохлаждению организма человека и, в конце потере работоспособности, потере сознания и к тепловой смерти Величина тепловыделения организмом человека зависит от степени физической нагрузки, определенных климатических условий и составляет от 85 (в состоянии покоя) до 500 Дж/с (тяжелая работа).

    Нормальное тепловое самочувствие имеет место, если тепловыделение (Q тв) организма человека полностью воспринимаются окружающей средой (Q тн) то есть если имеет место тепловой баланс (Q тв)=(Q тн), когда температура внутренних органов остается постоянной в пределах 36,6 °С.

    Организм человека способен поддерживать устойчивую температуру тела при достаточно широких колебаниях параметров окружающей среды. Так, тело человека сохраняет температуру близкую 36,6 0Спри колебаниях окружающей температуры от -40 °С до +40 °С. При этом температура отдельных участков кожи и внутренних органов может быть от 24 °С до 37,1 °С.

    Наиболее интенсивные обменные процессы происходят в печени, ее температура - 38,0...38,5 °С. Существует суточный биоритм температур кожи: максимальная (37,0...37,1 °С) в 16.00...19.00, минимальная (36,0. .36,2 °С) в 2.00...4.00 по местному времени.

    Уравнение теплового баланса окружающей среды человека впервые было проанализировано в 1884 году профессором Флавицким И.И. Теплообмен

    между человеком и окружающей средой осуществляется конвекцией вследствие обтекания тела воздухом (g k),теплопроводностью через одежду (g), излучением на окружающие поверхности (g) и в процессе тепломассообмена (Q TM) Рй выпаривании влаги, которая выводится на поверхность потовыми железами (g п)и при дыхании (g д):

    Q TH = g + g + g + gп + gд, (1)

    Конвективный теплообмен определяется по закону Ньютона:

    g= α K F e (t пов -t нс), (2)

    где t пов - температура поверхности тела человека (зимой -27,5 °С, летом - 31 °С);

    t нс - температура окружающей среды,

    F e , - эффективная поверхность тела человека (50...80% геометрической внешней поверхности тела человека). Для практических расчетов она принимается равной 1,8 м 2 ;

    α K - коэффициент теплоотдачи конвекцией, α K =4,06 Вт/(м 2 град).

    Величина и направление конвективного теплообмена человека с окружающей средой определяется, преимущественно, температурой окружающей среды, барометрическим давлением, скоростью движения и влагосодержанием воздуха.

    Уравнение Фурье, которое описывает теплопроводность в одномерном теплопроводном поле, можно записать в виде:

    где α 0 - коэффициент теплопроводности тканей одежды человека, Вт/град;

    Теплообмен излучением происходит за счет электромагнитных волн между телами, разделенными лучепрозрачной средой. Тепловая энергия, превращаясь на поверхности горячего тела в лучистую, передается на холодную поверхность, где снова превращается в тепловую. Лучистый поток тем больше, чем меньше температура поверхностей, которые окружают человека и может быть определена с помощью обобщенного закона Стефана-Больцмана:

    (4)

    где: T 1 - средняя температура поверхности тела и одежды человека, К;

    T 2 - средняя температура окружающих поверхностей, К;

    γ 1-2 - коэффициент излучения, зависящий от расположения и размеров поверхностей F 1 и F 2 и указывающий на частицу лучистого тепла, которая приходится на поверхность F 2 , от всего потока, который излучается поверхностью F 1 ;

    Спр = С 1 х С 2 /С 0 - приведенный коэффициент излучения, Вт/(м 2 К 4);

    Со - коэффициент излучения абсолютно черного тела.

    Количество тепла, которое отдается человеком в окружающую среду при испарении влаги, которая выводится на поверхность кожи потовыми железами, определяется по формуле:

    где: G П - количество влаги, которая выделяется и испаряется, кг/с;

    г - скрытая теплота выпаривания влаги, которая выделяется, Дж/кг.

    Количество тепла, которое отдается в окружающую среду с поверхности тела при испарении пота, зависит не только от температуры воздуха и интенсивности работы, выполняемой человеком, но и от скорости движения окружающего воздуха и его относительной влажности.

    Количество тепла, которое расходуется на нагревание вдыхаемого воздуха, можно определить за уравнением:

    где: V ЛВ - легочная вентиляция, м 3 /с;

    ρ ВД - плотность влажного вдыхаемого, кг/м 3 ;

    Ср - удельная теплоемкость вдыхаемого, Дж/(кг/град);

    t вид - температура выдыхаемого воздуха, °С;

    t вд - температура вдыхаемого, °С.

    Легочная вентиляция - это объем воздуха, который вдыхается человеком в единицу времени. Она определяется как произведение объема воздуха, который вдыхается за один вдох, на число циклов дыхания в секунду.

    Количество теплоты, которое выделяется человеком с выдыхаемым воздухом, зависит от физической нагрузки, влажности и температуры окружающего воздуха.

    В целом тепловое самочувствие человека зависит от интенсивности физической нагрузки организма, температуры окружающих предметов и параметров микроклимата (температуры, скорости движения и относительной влажности воздуха, барометрического давления, интенсивности излучения от нагретых поверхностей).

    1. ВЛИЯНИЕ ПАРАМЕТРОВ МИКРОКЛИМАТА НА САМОЧУВСТВИЕ

    ЧЕЛОВЕКА.

    Параметры микроклимата оказывают непосредственное влияние на самочувствие человека и его работоспособность. Снижение температуры для всех других условий приводит к возрастанию теплоотдачи путем конвекции и излучения и может обусловить переохлаждение организма.

    Повышение скорости движения воздуха ухудшает самочувствие, поскольку оказывает содействие усилению конвективного теплообмена и процесса теплоотдачи при испарении пота.

    При повышении температуры воздуха имеют место обратные явления. Установлено, что при температуре воздуха свыше 16 °С работоспособность человека начинает падать. При такой температуре и влажности воздуха практически все тепло, которое выделяется, отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожи.

    Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек, их пересыханию и растрескиванию, загрязнению болезнетворными микробами.

    Вода и соли, которые выносятся из организма с потом, должны возмещаться, поскольку их потеря приводит к сгущению крови и нарушению деятельности сердечно-сосудистой системы.

    Обезвоживание организма на 6% вызовет нарушение умственной деятельности, снижение остроты зрения. Обезвоживание на 15...20 % приводит к смертельному исходу.

    Потеря соли лишает кровь способности удерживать воду и вызовет нарушение деятельности сердечно-сосудистой системы. Из-за высокой температуры воздуха и при дефиците воды в организме усиленно расходуются углеводы, жиры, разрушаются белки.

    Продолжительное влияние высокой температуры в сочетании со значительной влажностью воздуха может привести к накоплению теплоты в организме и к гипертермии.

    Гипертермия - это состояние человека, при котором температура тела поднимается до 38...40 °С. При гипертермии, и как следствие при тепловом ударе, наблюдается головная боль, умопомрачение, общая слабость, искажение цветного восприятия, сухость во рту, дурнота, блевотина, потовыделение. Пульс и частота дыхания ускоряются, в крови возрастает содержимое остаточного азота и молочной кислоты. Наблюдается бледность, посинение кожи, расширение зрачков, временами возникают судороги, потеря сознания.

    Из-за пониженной температуры, значительной скорости движения и влажности воздуха возникает переохлаждение организма (гипотермия ). На начальном этапе влияния холода наблюдается снижение частоты дыхания, увеличение объема вдоха. Из-за продолжительного влияния холода дыхание становится неритмичным, частота и объем вдоха возрастают, изменяется углеводный обмен. Появляется мышечное дрожание, при котором внешняя работа не выполняется, и вся энергия дрожания превращается в теплоту. Это позволяет на протяжении некоторого времени задерживать понижение температуры внутренних органов. Следствием действия низких температур являются простудные заболевания.

    Параметры микроклимата служат причиной существенного влияния на производительность труда и на травматизм.

    Влияние температуры воздуха на среднюю производительность труда показано на графике (рис.2 1).

    Рис. 1. Влияние температуры воздух на производительность труда

    4. Мероприятия по нормализации параметров микроклимата.

    На сегодняшний день основными нормативными документами, определяющими параметры микроклимата производственных помещений, являются ГОСТ 12.1.005-88 ССБТ «Общие санитарно-гигиенические требования к воздуху рабочей зоны» и ДСН 3.3.042 – 99. Санітарні норми мікроклімату виробничих приміщень. Київ, 1999 р.

    Здесь указанные параметры нормируются для рабочей зоны – просторной, ограниченной по высоте 2 м над уровнем пола или площадки, на которой находятся рабочие места постоянного или непостоянного (временного) пребывания работников.

    В основу принципа нормирования параметров микроклимата положена дифференциальная оценка оптимальных и допустимых метеорологических условий в рабочей зоне в зависимости от тепловой характеристики производственного помещения, категории работ по степени тяжести и периода года.

    Оптимальными (комфортными) считаются такие условия труда, для которых имеет место наибольшая работоспособность и хорошее самочувствие. Допустимые микроклиматические условия предусматривают возможность напряженной работы механизма терморегуляции, которая не выходит за пределы возможностей организма, а также дискомфортные ощущения.

    Оптимальные и допустимые параметры микроклимата в рабочей зоне производственных помещений для разных категорий тяжести работ в теплый и холодный периоды года, приведены в таблице 2.2. ГОСТ 12.1.005-88 ССБТ.

    Для обеспечения нормативных параметров микроклимата в производственных помещениях проводятся технологические, технические, санитарно-технические и организационные мероприятия.

    Наиболее радикальными методами управления микроклиматом являются:

    Максимально возможная механизация и автоматизация тяжелых и трудоемких работ;

    Дистанционное управление тепло излучающими процессами и аппаратами, исключающими необходимость пребывания работающих в зоне инфракрасного облучения;

    Рациональное размещение и теплоизоляция оборудования, коммуникаций и других источников, излучающих тепло в рабочую зону.

    Оборудование источников интенсивного влаговыделения с открытой поверхностью испарения (ванны, красильные и промывочные аппараты и другие емкости с водой или растворами)

    Основной способ борьбы с лучистой теплотой (инфра­красным излучением) на рабочих местах заключается в изоляции излучающих поверхностей, т.е. создании опре­деленного термического сопротивления на пути теплового потока в виде экранов различных конструкций (жестких глухих, сетчатых полупрозрачных, водяных, водно-воз­душных и др.). Действие защитных экранов заключается либо в отражении лучистой энергии обратно к источнику излучения либо в ее поглощении. По принципу работы различают отражающие, поглощающие и теплоотводящие экраны. Однако это деление условно, так как любой экран обладает способностью отражать, поглощать или от­водить теплоту. Принадлежность экрана к той или иной группе зависит от преимущественного свойства последне­го. В зависимости от возможности наблюдения за ходом технологического процесса экраны можно разделить на три типа: непрозрачные, полупрозрачные и прозрачные.

    Среди организационных мероприятий следует отме­тить следующие:

    ♦ организация рационального водно-солевого режима работающих с целью профилактики перегрева организма. Для этого к питьевой воде добавляют небольшое количест­во (0,2-0,5%) поваренной соли и насыщают ее диоксидом углерода (сатурируют). Прием газированной подсоленной воды позволяет быстро восстанавливать нарушенное вод­но-солевое равновесие организма, утолять жажду, ком­пенсировать потоотделение и соответственно снижать по­тери массы. Диоксид углерода придает вкус воде и улуч­шает секрецию желудочного сока;



    ♦ устройство в «горячих цехах» специально оборудо­ванных комнат, кабин или мест для кратковременного от­дыха, в которые подается очищенный и умеренно охлаж­денный воздух;

    ♦ для предупреждения переохлаждения и простудных заболеваний работающих у входа в цех устраивают тамбу­ры или создают воздушные тепловые завесы, которые направляют поток холодного наружного воздуха в верх­нюю зону помещения. Для работающих длительное время на холоде предусматривают специально оборудованные помещения для периодического обогрева.

    3. Для обеспечения нормативных микроклиматических условий в холодный период года помещения должны оборудоваться системами отопления. Отопление. Отопление проектируется для обеспечения в помещениях расчетной температуры воздуха, которая принимается в зависимости от периода года.

    Для производственного отопления используются специальные системы. Система отопления – это комплекс конструктивных элементов, предназначенных для получения, переноса и подачи необходимого расчетного количества тепла в обогреваемые помещения.

    По месту размещения генератора тепла относительно отапливаемых помещений системы отопления могут быть местными и центральными.

    К местным системам относят такие, в которых генератор тепла, нагревательные приборы и теплопроводы находятся непосредственно в отапливаемом помещении и конструктивно объединены в одной установке (печное, воздушное, панельное (лучистое), а также отопление местными газовыми, электрическими приборами или котлами, работающими на различных видах топлива).

    При панельном (лучистом) отоплении нагревательные приборы либо совмещены с ограждающими конструкциями (т.е. находятся в междуэтажных перекрытиях, стенах, перегородках), либо расположены свободно в виде плоских панелей, плафонов, излучателей. К системам центрального отопления относятся такие, в которых генераторы тепла расположены вне отапливаемых помещений. В этом случае генератор тепла и нагревательные приборы отдалены друг от друга. Теплоноситель нагревается в генераторе, находящемся в тепловом центре (ТЭЦ, котельная), перемещается по теплопроводам в обогреваемые здания и помещения и, передав тепло через нагревательные приборы, возвращается в тепловой центр.

    Центральные системы отопления представлены прежде всего водяными, паровыми, воздушными и комбинированными.

    Наиболее современным способом обеспечения оптимальных параметров микроклимата в помещениях является кондиционирование воздуха.

    Кондиционирование воздуха - это автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения) с целью обеспечения, главным образом, оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей культуры.

    В общем случае под кондиционированием понимается нагревание или охлаждение, увлажнение или осушка воздуха и очистка его от пыли. Для кондиционирования воздуха используются различные типы кондиционеров, которые в зависимости от расхода воздуха подразделяются на промышленные, полупромышленные и бытовые. По месту монтажа и системе расположения блоков они делятся на оконные, сплит-системы, мобильные, чиллеры, фанкойлы, центральные кондиционеры, руф-топы, прецезионные и VRF.

    Аэроионизация воздуха. Источниками аэроионизации воздуха могут быть природные явления (космические и другие излучения, грозы, выпадение осадков, естественный радиоактивный распад элементов и пр.), технологические процессы и оборудование (рентгеновское и ультрафиолетовое излучения, термоэмиссия, фотоэффект, наличие высоких уровней электрического напряжения в технологическом оборудовании и электрических цепях) и специальные устройства (искусственная ионизация), при воздействии которых на воздушную среду происходит образование электрически заряженных частиц (ионов).

    Аэроионы повышают умственную и физическую работоспособность, снимают стресс, укрепляют нервную систему, повышают сопротивляемость организма к инфекционным заболеваниям.

    Для нормализации аэроионного состава воздуха в помещениях используют приточно-вытяжную вентиляцию, групповые и индивидуальные ионизаторы, устройства автоматического регулирования ионного режима воздушной среды.

    Кроме всего вышеизложенного производственные помещения должны обеспечиваться как естественной, так и механической вентиляцией.