Войти
Образовательный портал. Образование
  • Имена мальчиков рожденных в январе Азербайджанские имена родившиеся в январе по гороскопу
  • Суточный диурез у беременных женщин
  • Как рассчитать налог на автомобиль по лошадиным силам Изменения по транспортному налогу в году
  • Храм Солнца: Черная Пагода Конарака
  • В Туве упал космический корабль «Прогресс» видео падения Борис Леконцев, заслуженный метеоролог РФ
  • Тесты что лишает меня энергии
  • Защита от рентгеновского излучения: двери и свинцовые листы. Рентгеновское излучение и меры защиты Защита от рентгеновских лучей

    Защита от рентгеновского излучения: двери и свинцовые листы. Рентгеновское излучение и меры защиты Защита от рентгеновских лучей

    Коми филиал Кировской государственной медицинской академии

    Дисциплина Гигиена

    Рентгеновское излучение в медицине и меры защиты
    персонала и пациентов

    Исполнитель: Репин К. В. 304 гр.

    Преподаватель: Зеленов В. А.

    Сыктывкар, 2007


    Содержание

    История открытия рентгеновских лучей. 3

    Средства индивидуальной и коллективной защиты в рентгенодиагностике. 6

    Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации.. 11


    История открытия рентгеновских лучей.

    На пороге XX столетия были сделаны два важных открытия, заново перестроивших наши знания во многих отраслях науки и техники - это открытие лучей Рентгена 8 ноября 1895 г. и последовавшее за ним в 1896 г. открытие Беккерелем радиоактивности.

    О том впечатлении, которое произвело на мировую общественность открытие Рентгена, свидетельствует следующее высказывание московского физика П. Н. Лебедева, который в мае 1896 г. писал: "Еще никогда ни одно открытие в области физики не встречало такого всеобщего интереса и не было так обстоятельно обсуждаемо в периодической печати, как открытие Рентгеном нового, до той поры неизвестного рода лучей”.

    Вильгельм-Конрад Рентген родился 27 марта 1845 г. в Лениепе, маленьком городке в Германии. Будучи уже в одном из старших классов гимназии, он был исключен из нее за то, что отказался выдать товарища, нарисовавшего на доске карикатуру на нелюбимого педагога. Не имея аттестата зрелости, Рентген не мог попасть в университет и поступил сначала в машиностроительное училище, а затем в Цюрихский политехнический институт.

    Получив в 1868 г. диплом инженера машиностроения, Рентген принимает предложение физика Кундта и становится его ассистентом, посвятив всю свою жизнь научно-педагогической деятельности. В 1869 г. он получает ученую степень доктора наук, а в 1875г., в возрасте тридцати лет, избирается профессором физики и математики в Сельскохозяйственную академию в Хохенхейме. В 1888г. по приглашению старейшего университета Германии в Вюрцбурге Рентген занимает должность ординарного профессора физики и заведующего физическим институтом.

    В течение более чем пятидесятилетней научной деятельности Рентген напечатал около 50 работ, посвященных различным разделам физики. Будучи уже ученым с мировым именем, он не оставляет педагогической деятельности и продолжает читать лекции по экспериментальной физике. Только в возрасте 70 лет Рентген оставляет кафедру, продолжая научную деятельность почти до последних дней жизни в должности заведующего Институтом физики и метрологии в Мюнхене.

    Характерными чертами Рентгена как человека были его исключительная скромность, сдержанность и замкнутость. Так, в своей лаборатории он до самой смерти запрещал называть открытые им лучи рентгеновыми лучами, а только "Х-лучами" (X-Rays), несмотря на состоявшееся в 1906 г. решение Первого международного съезда по рентгенологии о присвоении им наименования лучей Рентгена.

    Требовательный и строго принципиальный в научно-исследовательской работе, он был прямолинеен и принципиален также и в жизни, независимо от того, с кем ему приходилось встречаться. Вместе с тем простота и скромность не покидали его и тогда, когда он стал одним из величайших людей в истории человечества. Исключительным было отношение Рентгена к студенческой молодежи.

    Рентген тяжело переживал первую империалистическую войну и отношение всего мира к немцам, признавая неправоту официальных германских кругов. Противники Германии в начале войны вычеркнули и его имя из списка мировых ученых. Сам же Рентген находил себе утешение в том, что его открытие в большой мере способствовало смягчению страданий множества раненых, а многим спасло жизнь, что в еще большей степени выявилось в период второй мировой войны.

    Рентген скончался 10 февраля 1923 г., на 78 году жизни. Свыше ста наград и почетных званий во всех странах мира было присуждено ему за его открытие, в том числе от Общества русских врачей в Санкт-Петербурге, Общества врачей в Смоленске, от Новороссийского университета в Одессе. Во многих городах его именем были названы улицы. Советское правительство, признавая великие заслуги Рентгена перед наукой и человечеством, воздвигло ему еще при жизни памятник перед зданием Рентгенологического института в Ленинграде; его именем была названа улица, на которой находится этот институт.

    Свое открытие Рентген совершил в процессе исследования особого рода лучей, известных под названием катодных, которые возникают при электрическом разряде в трубках с сильно разреженным газом.

    Наблюдая в затемненной комнате свечение флуоресцирующего экрана - картона, покрытого платиносинеродистым барием, - вызываемое потоком катодных лучей, выходящих из трубки через окошечко, Рентген вдруг заметил, что при прохождении тока через трубку расположенные поодаль на столе кристаллы платиносинеродистого бария также светятся. Естественно, он предположил, что свечение кристаллов вызывается видимым светом, который испускала трубка. Чтобы проверить это, Рентген обернул трубку черной бумагой; однако свечение кристаллов продолжалось. Чтобы решить другой вопрос - катодные ли лучи вызывают свечение экрана или другие, еще дотоле неизвестные лучи, Рентген отодвинул экран на значительное расстояние; свечение не прекращалось. Так как было известно, что катодные лучи могут проходить в воздухе лишь несколько миллиметров, а в своих опытах Рентген далеко превзошел пределы этой толщины слоя воздуха, то он заключил, что либо полученные им катодные лучи обладают такой проникающей способностью, какую до него никто еще не получал, либо это должны были быть какие-то другие, еще неизвестные лучи.

    В процессе исследования Рентген поставил по ходу лучей книгу; свечение экрана стало несколько менее ярким, но все же продолжалось. Пропуская таким же образом лучи сквозь дерево и различные металлы, он заметил, что интенсивность свечения экрана была то более сильная, то ослабевала. Когда же на пути прохождения лучей были поставлены платиновая и свинцовая пластинки, то свечение экрана не наблюдалось совсем. Тогда у него мелькнула мысль поставить на пути лучей свою кисть, и на экране он увидел четкое изображение костей на фоне менее четкого изображения мягких тканей. Чтобы зафиксировать все то, что он видел, Рентген заменил флуоресцирующий картон фотографической пластинкой и получил на ней теневое изображение тех предметов, которые ставились между трубкой и фотопластинкой; в частности, после 20-минутного облучения своей кисти он получил также и ее изображение на фотографической пластинке.

    Рентген понял, что перед ним новое, дотоле неизвестное явление природы; оставив все другие занятия, он после двух месяцев работы сумел дать ему столь исчерпывающее объяснение, подтвержденное рядом собранных им фактов, что в течение последующих 17 лет в тысячах работ, посвященных его открытию, не было сказано ничего принципиально нового. Почти все свойства открытых им лучей Рентген сформулировал в трех работах, относящихся к 1895, 1896 и 1897 гг. Он же разработал и технику получения этих новых лучей.

    Академик А. Ф. Иоффе, работавший с Рентгеном в течение многих лет, пишет: "с тех пор, как открыты рентгеновы лучи, прошло 50 лет. Но из того, что Рентген опубликовал в первых трех сообщениях, не может быть изменено ни одно слово. Многие тысячи исследований не могли прибавить ни йоты к тому, что сделал сам Рентген в самых элементарных условиях с помощью самых элементарных приборов".

    Первое сообщение Рентгена появилось в научной печати в начале января 1896 г. В короткое время оно было переведено на многие иностранные языки, в том числе и на русский. Уже 5 января 1896 г. сведения об открытии Рентгена проникли в общую печать. Весь мир был ошеломлен и взволнован известием об этом открытии. Сообщениями об "Х-лучах" были полны как научные журналы, так и общие журналы и газеты.

    В России открытие Рентгена было воспринято с энтузиазмом не только специалистами-учеными, но и всей общественностью. А.М.Горький в 1896 г. писал, что рентгеновы лучи это "величайшее создание человеческого гения".

    Рентген отлично понимал, какие материальные выгоды сулило ему его открытие. Однако он отказался от извлечения из него каких-либо материальных выгод для себя и отклонил ряд весьма выгодных предложении американских и германских фирм, ответив им, что его открытие принадлежит всему человечеству.

    Не будет преувеличением сказать, что рентгенология в медицине за сравнительно короткий период своего развития сделала столько, сколько не сделала ни одна другая отрасль нашего знания. То, что раньше было доступно лишь одиночкам, блестящим мастерам и знатокам своего дела, благодаря рентгеновым лучам стало доступно рядовым врачам. Во многих разделах медицинского знания наши представления были в корне изменены под влиянием того нового, что дало рентгенологическое исследование, и не только в области распознавания болезней, но и в области их лечения. В минувшую войну рентгенология в немалой степени способствовала быстрейшему восстановлению здоровья раненых бойцов и командиров нашей армии и флота, а также разработке и внедрению в практику таких операций, которые были бы немыслимы без нее.

    Биологическое действие рентгеновых лучей не было известно Рентгену. К сожалению, оно стало известно позднее ценой многих жизней врачей, инженеров и рентгенолаборантов, которые, не предполагая повреждающего действия рентгеновых лучей, не могли принимать своевременно предохранительных мер. На почве хронического и длительного раздражения рентгеновыми лучами развивались рентгеновские ожоги кожи и хронические воспаления в ней, переходившие позднее в рак, а также тяжелое малокровие.

    Так у нас в стране погибли от профессионального рентгеновского рака врачи С. В. Гольдберг, С. П. Григорьев, Н.Н. Исаченко, Я.М. Розенблат, рентгенолаборант И. И. Ланцевич и др., за рубежом - Альберс-Шенбер г, Леви-Дорн (Германия), Гольцкнехт (Австрия), Бергонье (Франция) и многие другие пионеры рентгенологии.

    Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

    Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".


    Средства индивидуальной и коллективной защиты в рентгенодиагностике.

    В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

    · средства защиты от прямого неиспользуемого излучения;

    · средства индивидуальной защиты персонала;

    · средства индивидуальной защиты пациента;

    · средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

    Наличие большинства из этих средств в рентгенодиагностическом кабинете и основные их защитные свойства нормируются "Санитарными правилами и нормами СанПиН 2.6.1.1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

    В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

    Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

    Защита от используемого прямого излучения предусматривается в конструкции самого рентгеновского аппарата и отдельно, как правило, не выпускается (исключение могут составлять фартуки для экранно-снимочных устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений (табл. 1,2).

    Таблица 1 . Площадь процедурной с разными рентгеновскими аппаратами

    Рентгеновский аппарат Площадь, кв. м (не менее)

    Предусматривается
    использование
    каталки

    Не предусматривается
    использование
    каталки

    Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков) 45 40
    РДК с ПСШ, стойкой снимков, штативом снимков 34 26
    РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения 34 26
    РДК с ПСШ, имеющим дистанционное управление 24 16
    Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков) 16 16
    Аппарат для рентгенодиагностики с универсальной стойкой-штативом 24 14
    Аппарат для близкодистанционной рентгенотерапии 24 16
    Аппарат для дальнедистанционной рентгенотерапии 24 20
    Аппарат для маммографии 6
    Аппарат для остеоденситометрии 8
    Таблица 2. Состав и площади помещений для рентгеностоматологических исследований
    Наименование помещений Площадь кв. м (не менее)
    1. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с обычной пленкой без усиливающего экрана:
    - процедурная 8
    - фотолаборатория 6
    2. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с высокочувствительным пленочным и/или цифровым приемником изображения, в том числе с визиографом (без фотолаборатории):
    - процедурная 6
    3. Кабинет рентгенодиагностики методом панорамной рентгенографии или панорамной томографии:
    - процедурная 8
    - комната управления 6
    - фотолаборатория 8

    На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

    Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

    Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3).


    Таблица 3. Номенклатура обязательных средств радиационной защиты
    Средства радиационной защиты Назначение рентгеновского кабинета защиты
    флюорография рентгеноскопия рентгенография урография маммография денситометрия ангинография
    Большая защитная ширма (при отсутствии комнаты управления или др. средств) 1 1 1 1 1 1
    Малая защитная ширма 1 1 1
    Фартук защитный односторонний 1 1 1 1 1 1
    Фартук защитный двусторонний 1 1
    Воротник защитный 1 1 1 1 1 1
    Жилет защитный с юбкой защитной 1 1 1
    Передник для защиты гонад или юбка защитная 1 1 1 1 1 1
    Шапочка защитная 1 1 1
    Очки защитные 1 1 1
    Перчатки защитные 1 1 1
    Набор защитных пластин 1 1 1

    В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

    К передвижным средствам радиационной защиты относятся:

    · большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;

    · малая защитная ширма персонала - предназначена для защиты нижней части тела человека;

    · малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;

    · экран защитный поворотный - предназначен для защиты отдельных частей тела человека в положении стоя, сидя или лежа;

    · защитная штора - предназначена для защиты всего тела, может применяться взамен большой защитной ширмы.

    К индивидуальным средствам радиационной защиты относятся:

    · шапочка защитная - предназначена для защиты области головы;

    · очки защитные - предназначены для защиты глаз;

    · воротник защитный - предназначен для защиты щитовидной железы и области шеи, должен применяться также совместно с фартуками и жилетами, имеющими вырез в области шеи;

    · накидка защитная, пелерина - предназначена для защиты плечевого пояса и верхней части грудной клетки;

    · фартук защитный односторонний тяжелый и легкий - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен);

    · фартук защитный двусторонний - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен), включая плечи и ключицы, а сзади от лопаток, включая кости таза, ягодицы, и сбоку до бедер (не менее чем на 10 см ниже пояса);

    · фартук защитный стоматологический - предназначен для защиты передней части тела, включая гонады, кости таза и щитовидную железу, при дентальных исследованиях или исследовании черепа;

    · жилет защитный - предназначен для защиты спереди и сзади органов грудной клетки от плеч до поясницы;

    · передник для защиты гонад и костей таза - предназначен для защиты половых органов со стороны пучка излучения;

    · юбка защитная (тяжелая и легкая) - предназначена для защиты со всех сторон области гонад и костей таза, должна иметь длину не менее 35 см (для взрослых);

    · перчатки защитные - предназначены для защиты кистей рук и запястий, нижней половины предплечья;

    · защитные пластины (в виде наборов различной формы) - предназначены для защиты отдельных участков тела;

    · средства защиты мужских и женских гонад предназначены для защиты половой сферы пациентов.

    Для исследования детей предусматриваются наборы защитной одежды для различных возрастных групп.

    Эффективность передвижных и индивидуальных средств радиационной защиты персонала и пациентов, выраженная в значении свинцового эквивалента, не должна быть меньше значений, указанных в табл. 4,5.

    Таблица 4. Защитная эффективность передвижных средств радиационной защиты Таблица 5. Защитная эффективность индивидуальных средств радиационной защиты

    Наименование Минимальное значение свинцового эквивалента, mm Pb
    Фартук защитный односторонний тяжелый 0,35
    Фартук защитный односторонний легкий 0,25

    Фартук защитный двусторонний
    - передняя поверхность
    - вся остальная поверхность

    0,35
    0,25

    Фартук защитный стоматологический 0,25
    Накидка защитная (пелерина) 0,35

    Воротник защитный
    - тяжелый
    - легкий

    0,35
    0,25

    Жилет защитный
    передняя поверхность
    - тяжелый
    - легкий
    остальная поверхность
    - тяжелый
    - легкий

    Юбка защитная
    - тяжелая
    - легкая

    0,5
    0,35

    Передник для защиты гонад
    - тяжелый
    - легкий

    0,5
    0,35

    Шапочка защитная (вся поверхность) 0,25
    Очки защитные 0,25

    Перчатки защитные
    - тяжелые
    - легкие

    0,25
    0,15

    Защитные пластины (в виде наборов различной формы) 1,0 - 0,5
    Подгузник, пеленка, пеленка с отверстием 0,35
    Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации

    Облучение в медицинских целях по данным НКАДАР ООН занимает второе (после естественного радиационного фона) место по вкладу в облучение населения на Земном шаре. В последние годы радиационные нагрузки от медицинского использования излучения обнаруживают тенденцию к возрастанию, что отражает все большую распространенность и доступность рентгено-радиологических методов диагностики во всем мире. При этом медицинское использование ИИИ вносит самый большой вклад в антропогенное облучение. Усредненные данные облучения, обусловленные медицинским использованием излучений в развитых странах, приблизительно, эквивалентны 50% глобального среднего уровня облучения от естественных источников. Это связано, в основном, с широким применением в этих странах компьютерном томографии.

    Диагностическое облучение характеризуется довольно низкими дозами, получаемыми каждым из пациентов (типичные эффективные дозы находятся в диапазоне 1 - 10 мЗв), что в принципе вполне достаточно для получения требуемой клинической информации. Терапевтическое облучение, напротив, сопряжено с гораздо большими дозами, точно подводимыми к объему опухоли (типичные назначаемые дозы в диапазоне 20-60 Гр).

    В годовой коллективной дозе облучения населения Российской Федерации на долю медицинского облучения приходится около 30%.

    Принятие Федеральных Законов Российской Федерации: "О радиационной безопасности населения" и "Санитарно-эпидемиологическом благополучии населения" принципиально изменило правовые основы организации Госсанэпиднадзора за использованием медицинских источников ионизирующего излучения (ИИИ) и потребовало полного пересмотра санитарных правил и норм, регламентирующих ограничение облучения населения и пациентов от этих источников. Кроме того, возникла необходимость в разработке на Федеральном уровне новых организационных и методических подходов к определению и учету дозовых нагрузок, получаемых населением от медицинских процедур с использованием ИИИ.

    В России вклад медицинского облучения в интегральную дозу облучения населения особенно велик. Если по данным НКДАР ООН средняя доза, получаемая жителем планеты, составляет 2,8 мЗв и доля медицинского облучения в ней 14%, то облучение россиян составляет 3,3 мЗв и 31,2% соответственно.

    В Российской Федерации 2/3 медицинского облучения приходится на рентгенодиагностические исследования и почти треть на профилактическую флюорографию, около 4% - на высокоинформативные радионуклидные исследования. Стоматологические исследования добавляют в общую дозу облучения лишь малые доли процента.

    Население Российской Федерации по вкладу медицинского облучения по-прежнему является одним из самых облучаемых и, к сожалению, эта ситуация пока не имеет тенденции к снижению. Если в 1999 году популяционная доза медицинского облучения населения России составляла 140 тысяч чел.-Зв, а предшествующие годы еще меньше, то в 2001 году она возросла до 150 тысяч чел.-Зв. При этом численность населения страны сократилась. В России на каждого жителя в год проводится в среднем 1,3 рентгенологических исследования в год. Основной вклад в популяционную дозу вносят рентгеноскопические исследования - 34% и профилактические флюорографические исследования с использованием пленочных флюорографов - 39%.

    Одними из главных причин высоких доз медицинского облучения являются: низкие темпы обновления парка устаревших рентгеновских аппаратов на современные; неудовлетворительное сервисное обслуживание медицинской техники; недостаток материальных средств на приобретение средств индивидуальной защиты пациентов, высокочувствительных пленок и современного вспомогательного оборудования; низкая квалификация специалистов.

    Выборочная проверка технического состояния парка рентгеновской техники в ряде территорий субъектов Российской Федерации (г. Москва, г. Санкт-Петербург, Брянская, Кировская Тюменская области) показала, что от 20 до 85% действующих аппаратов работают с отклонениями от режимов, указанных в технических условиях. При этом около 15% аппаратов невозможно отрегулировать, дозы облучения пациентов при этом в 2-3, а нередко и более раз выше, чем при их нормальной эксплуатации и они должны быть списаны.

    Стратегия снижения дозовых нагрузок на население при проведении рентгенологических процедур должна предусматривать поэтапный переход в рентгенологии на технологии цифровой обработки информации и, прежде всего, при поведении профилактических процедур, доля которых в общем объеме рентгенологических исследований составляет около 33%. Расчеты показывают, что дозовые нагрузки на население при этом снизятся в 1,3 -1,5 раза.

    Важным компонентом снижения дозовых нагрузок на население является правильная организация работы фотолабораторного процесса. Основными элементами его являются: подбор типа пленки в зависимости от локализации области обследования и вида рентгенологической процедуры; наличие современных технических средств обработки пленок. Использование при работе в условиях "темной комнаты" оптимального набора современных технологий позволяет за счет резкого снижения дублирования снимков и оптимизации комбинаций "экран-пленка" снизить дозовые нагрузки на пациентов на 15-25%.

    Внедрение радиационно-гигиенических паспортов в практику деятельности ЦГСЭН и учреждений здравоохранения при правильных методических подходах к измерению, регистрации, учету и статистической обработке доз уже сегодня позволяет принимать управленческие решения, дающие максимальный эффект снижения индивидуального и коллективного радиационного риска при сохранении высокого качества оказания медицинской помощи населению. На современном этапе детальный анализ динамики дозовых нагрузок является основой в обосновании необходимости пересмотра медицинских технологий, использующих ИИИ, в пользу альтернативных методов исследования с оптимизацией по принципу "польза-вред". Такой подход, на наш взгляд, должен быть положен в основу разработки стандартов лучевой диагностики.

    Большая роль в решении вышеуказанной проблемы отводится персоналу отделений лучевой диагностики. Хорошее знание используемой аппаратуры, правильный выбор режимов исследования, точное соблюдение укладок пациентов и методологии его защиты - все это необходимо для качественной диагностики с минимальным облучением, гарантирующим от брака и вынужденных повторных исследований.

    Общепризнанно, что именно рентгенология располагает наибольшими резервами оправданного снижения индивидуальных, коллективных и популяционных доз. Эксперты ООН подсчитали, что уменьшение доз медицинского облучения всего на 10%, что вполне реально, по своему эффекту равносильно полной ликвидации всех других искусственных источников радиационного воздействия на население, включая атомную энергетику. Для России этот потенциал значительно выше, в том числе для большинства административных территорий. Доза медицинского облучения населения страны может быть снижена примерно в 2 раза, то есть до уровня 0,5-0,6 мЗв/год, который имеют большинство индустриально развитых стран. В масштабах России это означало бы снижение коллективной дозы на многие десяти тысяч человеко-Зв ежегодно, что равносильно предотвращению каждый год нескольких тысяч смертельных раковых заболеваний, индуцируемых этим облучением.

    При проведении рентгенорадиологических процедур облучению подвергается и сам персонал. Многочисленные опубликованные данные показывают, что в настоящее время рентгенолог получает в год дозу профессионального облучения, в среднем, около 1 мЗв в год, что в 20 раз ниже установленного предела дозы и не влечет за собой сколько-нибудь заметного индивидуального риска. Следует отметить, что наибольшему облучению могут подвергаться даже не работники рентгеновских отделений, а врачи так называемых "смежных" профессий: хирурги, анестезиологи, урологи, участвующие в проведении рентгенохирургических операций под рентгеновским контролем.

    В настоящее время правовые отношения, связанные с обеспечением безопасности населения при рентгенорадиологических исследованиях изложены более чем в 40 нормативно-правовых и организационно-распорядительных документах. Поскольку уровни облучения пациентов в медицинской практике не нормируются, соблюдение их радиационной безопасности должно обеспечиваться за счет соблюдения следующих основных требований:

    * проведение рентгенорадиологических исследований только по строгим медицинским показаниям с учетом возможности проведения альтернативных исследований;

    * осуществление мероприятий по соблюдению действующих норм и правил при проведении исследований;

    * проведение комплекса мер по радиационной защите пациентов направленных на получение максимальной диагностической информации при минимальных дозах облучения.

    При этом должен в полном объеме осуществляться производственный контроль и государственный санитарно-эпидемиологический надзор.

    Реализация в полном объеме предложений госсанэпидслужбы России по оптимизации дозовых нагрузок при проведении рентгенодиагностических процедур по итогам ежегодной радиационно-гигиенической паспортизации медицинских учреждений позволит уже в ближайшие 2-3 года снизить эффективную среднюю годовую дозу облучения на одного человека до 0,6 мЗв. При этом суммарная годовая коллективная эффективная доза облучения населения уменьшится почти на 31 000 чел.-Зв, а число вероятных случаев возникновения злокачественных заболеваний (смертельных и не смертельных) снизится за этот период более чем на 2200.

    Излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы. Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества...



    как при контроле просвечиванием, так и при изготовлении серийных снимков. К настоящему времени выделились следующие виды контрастных ангиографических исследований: - сосудов мозга (церебральные исследования); - сердечно-сосудистой системы (коронарография, васкулярная ангиография, вентрикулография); - брюшной аорты сосудов почек (аортография); периферических сосудов конечностей. Эти...

    Повреждающеедействие на организм человека ионизирующих излучений вызывает необходимость защиты от него как персонала рентгеновских кабинетов, так и пациентов при рентгенодиагностике. Уровень безопасного воздействия излучения на организм человека напрямую связан с понятием предельно допустимых доз облучения (ПДД). ПДД - это наибольшее значение индивидуальной дозы, полученной при облучении за год, которая при равномерном воздействии в течение 50 лет не вызывает у человека каких-нибудь патологических изменений. Различают ПДД для 3 группы радиочувствительных органов:

    1 группа - ПДД – 5 бэр в год – все тело, половые органы, красный костный мозг.

    2 группа - ПДД – 15 бэр в год – мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, ЖКТ, легкие, хрусталик глаза.

    3 группа - ПДД – 30 бэр в год – кожа, костная ткань, кисти, предплечья, лодыжки, стопы.

    Способы защиты от рентгеновского излучения:

    1. Защита экранированием:

    а) стационарные средства: баритовая штукатурка стен кабинетов, двери с листовым свинцовым покрытием, просвинцованное стекло в смотровых окнах;

    б) передвижные: защитные ширмы, так же с листовым свинцовым покрытием;

    в) индивидуальные средства: фартуки, перчатки, колпаки и бахилы из просвинцованной резины для персонала и покрытие из просвинцованной резины для защиты наиболее чувствительных тканей пациента во время проведения различных методов диагностики.

    2. Защита расстоянием – расположение рабочих мест персонала с максимальным удалением их от источника излучения, максимально возможное расстояние между рентгеновской трубкой и кожей пациента (кожно-фокусное расстояние). При увеличении этого расстояния вдвое, доза поглощённой радиации уменьшается в четыре раза.

    3. Защита временем - сокращение времени облучения снижает поглощённую суммарную дозу. В связи с этим существует строгая регламентация рабочего времени дня рентгенолога и время проведения рентгендиагностических процедур. Так при рентгенографии экспозиция длится в среднем до 1-3 секунд, при рентгеноскопии грудной клетки – до 5 минут, а при рентгеноскопии желудка - до 10 минут.

    Основными принципами радиационной защиты пациентов являются:

    Проведение исследований по строгим показаниям;

    Исключение дублирующих друг друга повторных исследований;

    Высокая квалификация персонала, проводящего исследования;

    Использование исправного диагностического оборудования;

    Применение индивидуальных средств защиты для участков тела, находящихся вне зоны облучения (гонады, щитовидная железа, молочная железа, хрусталик);

    Правильное позиционирование пациентов, ограничение зоны облучения и времени воздействия излучения.

    Контроль лучевой нагрузки пациента по индивидуальной дозиметрии.

    Доза излучения должна быть достаточной для получения качественных изображений.

    Уровни облучения персонала отделений лучевой диагностики не должны превышать 20 мЗв в год. Для людей, находящихся рядом с кабинетами лучевой диагностики или оказывающими помощь при исследованиях, доза облучения не должна превышать 5 мЗв в год.

    На персонал, работающий в отделениях лучевой диагностики, чаще воздействует вторичное излучение, которое образуется в связи с рассеянием прямого пучка, проходящего через тело пациента, и элементы конструкции оборудования. Интенсивность вторичного излучения в 100-1000 раз меньше, чем первичного, но оно распространяется во всех направлениях. Защита персонала отделений лучевой диагностики, обеспечивается следующими факторами:

    Использованием средств радиационной защиты (ширмы, экраны, очки, перчатки, фартуки и пр.);

    Специальной планировкой и защитой кабинетов рентгенодиагностики и пультовых;

    Постоянным обучением персонала правилам и принципам радиационной безопасности;

    Допуск к работе только сертифицированных врачей-радиологов и рентгенолаборантов;

    Проведение регулярного радиационного и дозиметрического контроля.

    Ультразвуковой метод исследования

    Ультразвуковой метод диагностики - это способ получения изображения органов на основе регистрации и компьютерного анализа отражённых от биологических структур ультразвуковых волн. Ультразвук – это звуковые колебания выше 20кГц. Физической основой ультразвука является пьезоэлектрический эффект открытый братьями Кюри в 1881 году. В 20-30 года ХХ века С.Я. Соколов разработал и внедрил ультразвуковую промышленную дефектоскопию. В это же время были первые попытки использования УЗИ в медицине, но наиболее широко данный метод стал использоваться в 60 годы за рубежом и с 70-80 – х годов в России.

    Сущность пьезоэлектрического эффекта заключается в том, что при деформации монокристаллов некоторых химических соединений (кварц, титанат бария, сернистый кадмий) под действием ультразвуковых волн на их поверхности возникают противоположные по знаку электрические заряды. И, наоборот, при подаче на эти кристаллы электрического тока в них возникают механические колебания с излучением ультразвуковых волн. Таким образом, пьезоэлемент может одновременно играть роль источника и служить приёмником ультразвуковых волн. Эту часть аппарата УЗИ называют акустическим преобразователем, трансдюсером или датчиком. Высокочастотные колебания обладают более высокой разрешающей способностью. В медицине используют частоты 2-10 МГц. При этом разрешающая способность УЗИ составляет 1-3 мм.

    Любая ткань препятствует распространению ультразвука, то есть обладают различным акустическим сопротивлением (импедансом). При распространении ультразвука в неоднородных тканях на границе двух сред одна часть волн продолжает своё движение и постепенно поглощается тканями, а другая часть волн отражается. Чем выше плотность ткани, тем больше волн отражается, а на экране дисплея появляется более интенсивная и яркая белая картинка. Полным отражателем является граница между тканями и воздухом. Поверхностно расположенные структуры исследуют с частотой 7,5 МГц и выше, а глубоко расположенные структуры исследуют с частотой 3,5 МГц.

    Методики УЗИ

    1. УЗИ в В-режиме – это получение информации в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени. Биологические структуры отличают по их эхогенности. Анэхогенные образования (заполнены жидкостью) выглядят на экране чёрными, гипоэхогенные (ткани с высокой гидрофильностью) серо-чёрные. Эхопозитивным является большинство тканей, и они дают серый цвет. Ткани с повышенной эхогенностью (плотные ткани) выглядят на экране светло серыми. А гиперэхогенные объекты полностью отражают ультразвук и на экране выглядят белыми при этом вслед за ними появляется тёиная дорожка (акустическая тень). Современные аппараты УЗИ выводят на экран множество изображений, каждое из которых длится сотую долю секунды, что позволяет получить меняющееся изображение органа в реальном масштабе времени.

    2. УЗИ в М-режиме – это одномерное эхоскопическое изображение органа. Получаемое изображение отражает изменение положения части органа во времени. Чаще всего такой режим используют при эхографии сердца и его клапанов.

    3. Допплерография - методика, основанная на эффекте Доплера, сущность которого состоит в том, что при движении объекта в сторону датчика частота сигнала увеличивается, а при удалении от источника - уменьшается. Виды допплерографии:

    а) потоковая спектральная допплерография – оценка кровотока в крупных сосудах и камерах сердца, запись которого представляет собой спектрограмму,

    б) цветное допплеровское картирование – позволяет определить направление тока крови в сосуде (красный - к датчику, а синий - от датчика).

    в) энергетическая допплерография –позволяет оценить плотность эритроцитов в заданном объёме ткани и дифференцировать кровоснабжаемые и некровоснабжаемые ткани.

    г) конвергентная цветовая допплерография – сочетание методики цветного допплеровского картирования и энергетического допплера (б+в).

    д) дуплексное исследование – сочетание УЗИ в В-режиме, с потоковым и энергетическим цветовым картированием.

    е) трёхмерное допплеровское картирование и трёхмерная энергетическая допплерография – это методики, дающие возможность наблюдать объёмную картину пространственного расположения кровеносных сосудов в режиме реального времени.

    4. Эхоконтрастные методы УЗ-исследования. Эта методика основана на внутривенном введении ультразвукового контраста, включающего свободные микропузырьки газа диаметром менее 5 мм и сохраняющих стабильность в системном кровотоке более 5 минут.

    5. Эндоскопическое УЗИ. Данный метод УЗИ позволяет определить эхоструктуру объёмных образований или стенки полого органа в ходе эндоскопического исследования. Методика позволяет оценить степень прорастания опухоли в стенку органа.

    6. Интракорпоральное УЗИ – трансректальное, трансвагианльное, трасэзофагеально, трансуретрально и т.д.

    Клиническое использование УЗИ: плановые исследования паренхиматозных органов, неотложная диагностика травм и заболеваний брюшной полости, патология сердца, гнойные заболевания мягких тканей и полостей организма, мониторинг состояния того или иного органа в процессе лечения и после операции, интраоперационная диагностика патологии и степени распространённости процесса, исследование суставов, позвоночного столба, допплерография магистральных и интракраниальных сосудов, артерий и вен среднего калибра. Методики УЗИ широко используется в акушерстве и гинекологии для пренатальной диагностики врождённых аномалий и патологии плода, а также для диагностики заболеваний и опухолей женской половой сферы.

    Достаточно большое количество медицинских обследований использует рентгеновские лучи. Об их вреде на организм написаны огромные трактаты, поэтому эта сторона их применения изучена максимально хорошо.

    Чтобы обезопасить всех присутствующих в кабинете в момент проведения диагностики, используются специальные защитные двери, ширмы и листы из свинца. Учитывая их важное предназначение, необходимо максимально тщательно подходить к компаниям-изготовителям защитной продукции, доверяя только таким спецам, как, например, компания «МетПромСтар», которая занимается металлопрокатом уже более 10 лет. Ее партнерами за это длительное время стали все лидеры отрасли, что говорит уже о многом. Поэтому, заказывая свинцовые листы для защиты от рентгеновского излучения, можно быть уверенными в стопроцентном качестве каждой единицы, не жалея ни минуты о потраченных на покупку средствах. Обслуживание компания «МетПромСтар» вывела на европейский уровень, предлагая своим клиентам и партнерам защиту от рентгеновских лучей наилучшего качества.

    Свинцовые листы для защиты от рентген-лучей: какими они должны быть

    Свинец – один из самых используемых металлов в мировой промышленности. Об этом говорят и следующие данные: всего за 5 месяцев его добывают около 2 000 000 тонн. Большая часть сырья уходит в машиностроение, а остальное используют для создания защитных приспособлений от радиации и шума. Практически ни один рентген-кабинет в частном или государственном медицинском учреждении не обходится без свинцовой обшивки стен, защитных дверей из свинца, мобильных свинцовых ширм, а также индивидуальных средств защиты медицинского персонала. Весь этот ассортимент имеется в каталоге компании «МетПромСтар», поэтому купить свинцовые листы и защитные двери можно оптом, сэкономив при этом внушительную сумму.

    Исследование рентген-лучами считается одним из самых точных, предоставляя врачам наиболее полную информацию об исследованном органе. На снимке отображается проекция внутреннего органа человека, увидеть который другим способом не представляется возможным. Рентген в России стал применяться более 100 лет назад, но это были в основном частные кабинеты. Первая же государственная клиника была создана 95 лет назад, после чего рентген-диагностику стали использовать все более часто. Сфера ее применения с тех времен существенно расширилась, поэтому и защита от облучения стала более актуальной.

    Чтобы защита от радиационных лучей стала стопроцентной, необходимо использовать свинец не менее 20 см толщиной. Именно этот материал используется при создании экранирования в рентген-кабинетах. Листовой свинец необходимой толщины можно заказать в «МетПромСтар» по выгодным ценам, а его доставка будет осуществлена в любой населенный пункт страны.

    Все нормы защитных приспособлений в кабинете с рентгеновским излучением регламентируются СанПин №2,6,1. 1192-3. Защита должна быть такой, чтобы экранирующий материал снижал облучение до минимума. И достичь этого можно только правильно подобранными материалами. Это означает, что для каждого конкретного кабинета понадобятся свинцовые листы определенного размера и толщины, что обусловлено размерами самого помещения. Нельзя устанавливать в рентген-кабинете первые попавшиеся листы из свинца, не учитывая его плановые особенности. Способность материала обеспечивать необходимые по нормам параметры защиты называется «свинцовый эквивалент», что означает определенное числовое значение, указывающее на толщину свинцового шара. Так, стационарные средства защиты (двери и окна) должны превышать указанный свинцовый эквивалент на четверть.

    Прежде чем устанавливать защиту рентген-кабинета, необходимо провести предварительный расчет каждого из защитных параметров. Свинцовые листы и двери должны четко соответствовать указанным параметрам, не отклоняясь от них ни на миллиметр.

    Работа с рентгеновским излучением без надлежащей защиты вредна для здоровья. Результатом продолжительного воздействия рентгеновского излучения на человеческое тело являются обнаруживаемые лишь в последствии ожоги кожи, изменения в составе крови и повреждения внутренних органов. Поэтому при работе с рентгеновскими аппаратами необходима защита персонала от прямого и косвенного облучения рентгеновскими лучами.Все работники радиологических отделений и кабинетов, лица, находящихся в смежных помещениях, а также пациенты подвергающиеся исследованию или лечению, должны быть надежно защищены от вредного действия излучений. Защитой называется совокупность устройств и мероприятий, предназначенных для снижения физической дозы излучения, воздействующей на человека, ниже предельно допустимой дозы.Исходными факторами при построении защиты является установленная медицинской практикой предельно допустимая доза или условно безвредная доза. Принято полагать, что при облучении рентгеновским или гамма-излучением ПДД равна 0,05 рентгена в день.

    Кроме того, биологическое действие рентгеновского излучения зависит от того, какие участки тела человека подвергаются облучению. При защите особо чувствительных к воздействию рентгеновского излучения органов тела значение мощности дозы в 0,05 р/день считается максимально допустимым и его следует снижать. Напротив, при облучении небольших участков кожного покрова оно является минимальным и может быть даже несколько увеличено.

    Защита от вредного действия рентгеновского излучения сводится к ослаблению интенсивности излучения трубки до указанного значения путем увеличения расстояния от фокуса трубки, а также помещением между трубкой и защищаемым объектом поглощающих экранов (стенок). Для уменьшения рассеянного излучения защиту размещают возможно ближе к рентгеновской трубке.

    Однако, так как вторичное рассеянное излучение всегда неизбежно возникает при попадании первичного излучения на облучаемый (исследуемый) объект и на окружающие предметы, то кроме защиты от первичных лучей необходима защита и от вторичного рассеянного излучения.

    Кроме свинца в качестве защитных материалов используется свинцовое стекло, просвинцованная резина, железо (сталь) и строительные материалы: кирпич, бетон, баритобетон, а иногда и вода.

    Защитные свойства этих материалов принято характеризовать «свинцовым эквивалентом А», под которым понимается «выраженная в миллиметрах толщина свинца, ослабляющая мощность физической дозы в воздухе в той же мере, как и данный образец защитного устройства. Часто защитные материалы характеризуются обратной величиной «линейным эквивалентом миллиметра свинца», который означает выраженную в миллиметрах толщину защитного слоя, действие которого эквивалентно слою свинца толщиною в 1 мм (на это число следует умножить толщину необходимого свинцового слоя, чтобы получить толщину защитного слоя из данного материала).



    При жестком излучении ослабление определяется главным образом, зависящим в первом приближении только от плотности вещества (р).Таким образом, при жестком излучении (выше 500-800 кв) преимущество свинца резко снижается.Защитные свойства свинцового стекла и свинцовой резины приблизительно пропорциональны содержанию свинца (плотности стекла).Защитные свойства различных материалов удобно характеризовать слоем десятикратного ослабления, т.е. толщиною слоя вещества, после прохождения, которого интенсивность излучения ослабляется в 10 раз. Эта характеристика значительно облегчает расчеты защиты. Например, для ослабления излучения в 100 раз необходимо взять толщину защитного вещества, равную двум слоям десятикратного ослабления. Очевидно, п слоев десятикратного ослабления снизит интенсивность излучения в 10й раз.Защита от рентгеновского излучения в широко распространенных диагностических и терапевтических установках, работающих при напряжениях ниже 110 кв, достигается применением защитных трубок. При этом необходимо следить за тем, чтобы необходимый для исследования первичный пучок лучей после прохождения через исследуемое тело полностью поглощался защитным материалом. В качестве защитного слоя достаточно пластин металлического свинца толщиною 2 мм или эквивалентного слоя какого-либо другого защитного вещества, например свинцовой резины толщиною 6 мм, свинцового высокопроцентного стекла (до 60-70 % свинца) толщиною 8-10 мм или баритового бетона толщиною около 30 мм (состав: 80 % по весу барита BaSO4 и 20 % цемента).В терапевтических рентгеновских аппаратах, работающих при напряжениях до 200-220 кв, защита более совершенна, так как жесткие рентгеновские лучи, попадая на другие тела, например на потолок, стены и т.п., вызывают вторичное рассеянное излучение, которое действует на работающий в этом помещении персонал. Поэтому работающие с установками этого типа защищены не только от непосредственного попадания лучей, исходящих из фокуса трубки, но также и от вторичных лучей, распространяющихся по всем направлениям.Трубка заключена в защитный кожух, покрытый металлическим свинцом толщиною 5 мм (безопасные или защитные трубки). Одновременно предусмотрена защита и от используемого для исследования пучка лучей. Персонал должен находится в соседнем помещении, отделенном защитной стенкой достаточной толщины, или должна быть сооружена защитная кабина, со всех сторон покрытая свинцом толщиною 5 мм или слоем других материатов соответствующей толщины: свинцовой резиной толщиною 15 мм, свинцового стекла (около 70 % свинца) толщиною 20-25 мм и баритового бетона толщиною 70 мм.Рентгеновские установки на более высокие напряжения помещаются в специальном помещении, огражденном со всех сторон защитными стенами, толщина которых соответствует нормам защиты.Проверка надежности защиты, производится фотодозиметрами (фотопленкой в конвертах из черной бумаги), размещенными в различных местах помещения на одну-две недели, а затем по степени зачернения пленки после проявления судят о рассеянных рентгеновских лучах в данном месте.Более точным является контроль защиты с помощью универсального дозиметра для гамма- и рентгеновского излучения (ГРИ) с набором сменных ионизационных камер, устанавливаемых в местах контроля и измеряющих макро- и микродозы.При проверке отсутствия щелей или повреждений в защитных стенах, ширмах, щитах пользуются ионизационными камерами малого объема, так как в противном случае интенсивный узкий пучок, проникающий через щель, будет ионизировать только часть объема воздуха в большой камере и следовательно, показания дозиметра будут неправильными (преуменьшенными). Важной является также защита от действия вредных для организма газов (озон и азотные соединения), которые образуются при работе рентгеновской установки в искровых промежутках и на остриях высоковольтной проводки. Удаление этих газов из помещения рентгеновских аппаратов осуществляется вытяжной вентиляцией. Ввиду того, что эти газы тяжелее воздуха, вытяжные каналы размещены не под потолком, а невысоко над уровнем пола.



    Основными устройствами защиты от вредною для здоровья рентгеновского излучения являются стационарные и нестационарные. Стационарные - стены, перекрытия, защитные двери, смотровые окна, стенки для местной защиты обеспечивают защиту от прямого и рассеянного излучения. Исходя из мощности рентгеновских установок и активности радиоактивных веществ, рассчитывают толщину всех защитных устройств. В частности, для изготовления стен применяют кирпич, бетон, бариго-бетон, баритовую штукатурку. Барит содержит барий и поэтому в значительной степени поглощает ионизирующее излучение. Двери в радиологические кабинеты обивают листовым свинцом или делают из металла. В смотровые окна вставляют просвинцованное стекло значительной толщины. Нестационарными устройствами называют перемещаемые приспособления, предназначенные для защиты персонала и больных, находящихся в тех же помещениях, где расположены источники излучений.

    К числу нестационарных устройству, принадлежат различные ширмы. Они изготавливаются из материала, поглощающего излучение, и устанавливаются в радиологических кабинетах таким образом, чтобы предохранить работников и больных от действия излучения.Высокими защитными ширмами огорожены рабочие места лаборантов в рентгенодиагностических кабинетах. Малая защитная ширма отделяет врача-рентгенолога от пациента, которого он исследует.Рентгеновские трубки в аппаратах защищены металлическими кожухами различных размеров и толщины. В рентгенодиагностических кабинетах малая защитная ширма отделяет врача-рентгенолога от пациента, которого он исследует.Рентгеновские трубки в аппаратах защищены металлическими кожухами различных размеров и толщины. В рентгенодиагностических и рентгенотерапевтических аппаратах перед выходным окном трубок установлены медные пластины фильтры для фильтрации рентгеновских лучей малой интенсивности, Перед выходным окном рентгеновской трубки в терапевтических аппаратах укреплены тубусы, ограничивающие пучок излучения. В диагностических аппаратах в основании тубуса укреплена створчатая диафрагма, состоящая из подвижных створок, с помощью которых врач-рентгенолог дистанционным управлением формирует рабочий пучок излучения до требуемой величины.К числу нестационарных защитных устройств принадлежат приспособления индивидуальной защиты: фартуки из просвинцованной резины, защитные юбочки, перчатки, шапочки.Участки тела пациента, которые не должны подвергаться облучению, покрывают листами из просвинцованной резины или специальными свинцовыми пластинами. Персонал радиологического отделения обеспечивается одеждой, состоящей из халата, пластикового фартука с нагрудником, пластиковых нарукавников, резиновых перчаток, тапочек, бахил и галош, очков или щитков из органического стекла, респираторов.Все эти предметы предназначены для защиты от попадания на поверхность тела или внутрь организма радиоактивных веществ. Работа с радиоактивными препаратами производится на специальных столах за защитными ширмами, свинцовыми экранами с использованием контейнеров и дистанционного инструмента. При работе с жидкими изотопами применяются автоматические и механические приспособления для разлива и забора препаратов (специальные шприцы, пипетки).Существенным фактором лучевой безопасности является рациональное расположение рабочих мест персонала с максимально возможным удалением их от источников излучения - это так называемая защита расстоянием. Защита расстоянием очень действенна, поскольку интенсивность облучения убывает обратно пропорционально квадрату расстояния от источника до облучаемой поверхности. Поэтому мощные источники излучения - гамма-установки, линейные ускорители, бетатроны - принято устанавливать в больших помещениях и в отдалении от стен. При планировке рентгенодиагностических кабинетов также всегда ставят целью максимальное удаление места работы врача-рентгенолога и лаборанта от точек наивысшего уровня радиации. Весьма важным фактором снижения радиационной нагрузки является максимальное сокращение времени пребывания персонала и больных в сфере действия ионизирующих излучений. Для сотрудников радиологических отделений установлен четырех-шестичасовой рабочий день и дополнительный отпуск.

    IV.Заключение

    Собрав весь нужный материал, и проделав самостоятельную работу, выполнили все поставленные задачи и ответили на поставленные вопросы. Мы узнали, что такое рентгеновское излучение, узнали о его видах, о характере данного излучения, также в ходе работы узнали о том, в каких целях применяется рентгеновское излучение в медицине, т.к. каждый будущий врач должен обладать этими знаниями.

    V.Список использованной литературы

    МЕРЫ ЗАЩИТЫ ОТ ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

    Рентгеновские аппараты

    www.medical-enc.ru

    http://www.all-fizika.com/article/index.php?id_article=1983

    www.all-fizika.com

    Рентгеновские трубки

    Характеристическое рентгеновское излучение

    Санитарно-гигиенические требования и мероприятия по защите от источников ионизирующих излучения на производстве, определяются:

    Активностью источников;

    Их агрегатному состоянию;

    Видом и энергией излучения;

    Количеством вещества;

    Характером технологического процесса. Для безопасности работ с источниками радиоактивных излучений

    необходимую защиту как от внешнего, так и от внутреннего облучения.

    Задача при обеспечении радиационной безопасности состоит в том, чтобы не допустить излучения выше предельно. Оно обеспечивается путем применения комплекса организационных и технологических мероприятий, в том числе "защиты временем" и "защиты расстоянием".

    Доза гамма излучения:

    где: Д - доза у-излучения, Р; и y - ионизационная стала данного изотопа, А - активность, мКи; t - время облучения, ч.; l - расстояние от источника, м.

    Из формулы видно, что доза облучения тем меньше, чем меньше время излучения - "защита временем" и чем больше расстояние от источника излучения - "защита расстоянием».

    "Защита время" во время работы достигается соответствующей подготовкой и организацией работ, составлением и соблюдением графиков, согласно которым при контакте с источниками излучения минимальный, а производительность труда остается достаточно высокой.

    "Защита расстоянием" при работе с радиоактивными веществами незначительной активности предусматривает использование ручных манипуляционных захватов и дистанционных универсальных манипуляторов. Ручные манипуляционные захваты передают движения и усилия рук оператора на некоторое расстояние с соответствующим увеличением этих движений и усилий. Удаленные универсальные манипуляторы позволяют выполнять различные операции по захвату и перемещению предметов, ориентации их под любым углом и др. Они обладают несколькими степенями свободы, ими можно управлять с большого расстояния с помощью рукояток, при этом оператор пальцами испытывает нагрузку и силу от захватов манипулятора. Наблюдение за работой осуществляется с помощью телевизионных систем, системы зеркал и перископов.

    При работе с радиоактивными веществами большой активности применяют автоматизированное оборудование, системы дистанционного управления.

    Экранирование является наиболее эффективной защитой от радиоактивного облучения, так как позволяет снижать дозу облучения на рабочем месте до предельно уровня. Проектируя защитные экраны, следует определить толщину и материал экрана с учетом вида и энергии излучения.

    Защитные экраны от а-излучения, как правило, не применяются, так как оно имеет малую проникающую способность. Слой воздуха в несколько сантиметров или более плотного материала в несколько миллиметров (стекло, картон, фольга, одежда, резиновые перчатки и др.) Обеспечивают достаточно полное поглощение а-излучения.

    Поглощение потока β-излучения может быть определено, если толщина защитного экрана может быть примерно определена по формуле:

    В защитных экранах для поглощения потока β-излучения применяют алюминий, стекло, плексиглас, свинец с облицовкой материалами с малым атомным номером. Свинец применяется при экранировании β излучений высоких энергий, так как это излучение при прохождении через вещество вызывает вторичное излучение (рентгеновское, в-излучения и нейтронов).

    Экраны для защиты от у-излучения выполняют из материалов с большим атомным номером и большой плотностью (свинец, вольфрам). Для стационарных сооружений применяют бетон, баритобетон, чугун, сталь, одновременно являются элементами строительных конструкций.

    Если известен уровень излучения на рабочем месте без защиты, то толщину защитных экранов от у-излучений можно определить по формуле:

    Защита от нейтронов осложняется тем, что они очень плохо поглощаются веществом. В связи с этим защита от нейтронов заключается в замедлении быстрых нейтронов и последующем поглощении уже замедленных. Защитными материалами от быстрых нейтронов является вода, парафин, графит, бериллий и ин.ш.

    Тепловые нейтроны хорошо поглощаются бором, кадмием.

    Применяют защитные экраны различных конструкций: стационарные, передвижные, разборные, настольные.

    При работе с малыми уровнями излучения используют вытяжные шкафы и боксы, отличающиеся достаточной герметичностью, оборудованные манипуляторами и приточно-вытяжной вентиляцией (7.1).

    При транспортировке и хранении радиоактивных веществ используют контейнеры и сейфы, выполненные из стали, свинца, чугуна.

    Для устранения попадания внутрь организма светящихся соединений (в настоящее время они применяются в исключительных случаях по шкалам приборов и ручках управления), вызывающие внутреннее облучение, необходимо соблюдать правила личной гигиены (мыть руки теплой водой с мылом перед едой, курением и др.) И исключать возможность их распыления и попадания в воздух производственных помещений.

    Работы с радиоактивными изотопами, а также техническое обслуживание приборов и установок, в которых используются изотопы, должны проводиться в специально отведенных помещениях с санитарно-техническим оборудованием и системой вентиляции.

    Техническое обслуживание и работа на установках с радиоактивными изотопами должна выполняться работниками не моложе 18 лет, прошедшие медицинский осмотр и специальное обучение безопасным методам работы на данной установке. Эти работники должны находиться под постоянным контролем, для них регламентируется продолжительность рабочего дня, выдается спецодежда, приборы индивидуального дозиметрического контроля

    При работе с радиоактивными веществами безопасность зависит в значительной степени от своевременного выявления и измерения уровня излучения.

    Измерение осуществляется специальными приборами - радиометрами, использующих различные методы - ионизационный сцинтилляционный, фотографический и химический. Для измерения альфа-, бета-, гамма и рентгеновского излучений и тепловых нейтронов применяются универсальные радиометры типов РКС2-01 и УИМ2-1 и другие.

    В процессе работы с радиоактивными веществами большое значение имеет применение средств индивидуальной защиты. Они должны предохранять кожу от загрязнений радиоактивными веществами и предотвращать их попадание внутрь организма.

    К средствам индивидуальной защиты относятся: спецодежду, перчатки, респираторы, пневмокостюмы, бахилы. Для непосредственной работы с радиоактивными веществами применяют средства индивидуальной защиты, изготовлены из прочного, хорошо дезактивированного поливинилхлоридного пластика.

    Органы дыхания защищают респираторами "Снежок-К", "чтб-1" и "Лепесток". В процессе работы в ремонтной зоне, при осмотре и вскрытии боксов и другого технологического оборудования, загрязненного радиоактивными веществами, применяют пневмошлемы типа "Лиз-4" с индивидуальной подачей в них воздуха.

    Рентгеновское излучение

    В процессе технической эксплуатации радиоаппаратуры, когда питающее напряжение радиоаппаратуры выше 15 кВ, необходимо обязательно использовать защитные средства для предотвращения облучению операторов и инженерно-технических работников рентгеновским излучением, так как при таких напряжениях рентгеновское излучение рассеивается в окружающем пространстве производственного помещения.

    Предельно допустимые дозы рентгеновского облучения предусмотрены санитарными нормами:

    Для всего тела человека в течение недели не более 100 мр (миллирентген)

    Только рук - 500 мр (80 мр в день).

    В смежных помещениях с рентгеновской установкой доза облучения в течение недели не должна превышать 10 мр, а в близлежащих домах мощность дозы не должна превышать дозу нормального фона более чем на 0,01 мр в час.

    Как защитные средства от действия мягких рентгеновских лучей применяются экраны из стального листа (1 мм), освинцованного алюминия (3 мм), покрытого оловом стекла (8 мм) или специальной резины (7.1).

    Смотровые окна в рентгеновских установках выполняют из плексигласа (30 мм) или покрытого оловом стекла.

    С целью предотвращения рассеивания рентгеновского излучения в производственном помещении, устраивают защитные ограждения из различных защитных материалов, например, свинца или бетона.

    При кратковременных работах на рентгеновских установках в качестве средств индивидуальной защиты применяются фартуки, перчатки, шапочки, изготовленные из покрытой оловом резины.

    Литература: , , , .

    Вопросы для самоконтроля

    1. В каких отраслях народного хозяйства используются ионизирующие излучения?

    2. Какие три стадии хронической лучевой болезни Вы знаете?

    3. Как оказывается влияние радиоактивных излучений на организм человека?

    4. От каких факторов зависят поражения радиоактивными веществами?

    5. Какая физическая суть единицы измерения ионизирующего излучения "зиверт"?

    6. В чем физический смысл единицы "рентген"?

    7. В каком документе установлены нормы радиационной безопасности?

    9. Какие работники не допускаются к работе с источниками ионизирующего излучения?

    10. Какие материалы применяют для защитных экранов?

    11. Как транспортируют и хранят радиоактивные вещества?

    12. Какой принцип защиты "расстоянием" и "время"?

    13. Какие методы контроля применяются для измерения радиоактивных излучений?

    14. Какие существуют приборы для измерения радиоактивных излучений?

    15. Какие следует применять индивидуальные средства защиты от радиоактивных излучений?