Войти
Образовательный портал. Образование
  • Семь советов от Отцов Церкви
  • Унжа (Костромская область)
  • Митрополит алексий московский святитель и чудотворец краткая биография Митрополит алексий годы
  • Попробуем разобраться в см - Документ
  • Открытия галилея в области астрономии
  • Сопливые грибы но не маслята
  • Озера и пруды как экосистема. Природные экосистемы Видовая структура озера

    Озера и пруды как экосистема. Природные экосистемы Видовая структура озера

    Экосистема — это функциональное единство живых организмов и среды их обитания. Основные характерные особенности экосистемы — ее безразмерность и безранговость. Замещение одних биоценозов другими в течение длительного периода времени называется сукцессией. Сукцессия, протекающая на вновь образовавшемся субстрате, называется первичной. Сукцессия на территории, уже занятой растительностью, называется вторичной.

    Единицей классификации экосистем является биом — природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных.

    Особая экосистема — биогеоценоз — участок земной поверхности с однородными природными явлениями. Составными частями биогеоценоза являются климатоп, эдафотоп, гидротоп (биотоп), а также фитоценоз, зооценоз и микробоценоз (биоценоз).

    С целью получения продуктов питания человек искусственно создает агроэкосистемы. Они отличаются от естественных малой устойчивостью и стабильностью, однако более высокой продуктивностью.

    Экосистемы — основные структурные единицы биосферы

    Экологическая система, или экосистема, — основная функциональная единица в экологии, так как в нее входят организмы и

    неживая среда — компоненты, взаимно влияющие на свойства друг друга, и необходимые условия для поддержания жизни в той ее форме, которая существует на Земле. Термин экосистема впервые был предложен в 1935 г. английским экологом А. Тенсли.

    Таким образом, под экосистемой понимается совокупность живых организмов (сообществ) и среды их обитания, образующих благодаря круговороту веществ, устойчивую систему жизни.

    Сообщества организмов связаны с неорганической средой теснейшими материально- энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода.

    В любом конкретном месте обитания запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков.

    Следовательно, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

    Рис. 8.1. Структура биогеоценоза и схема взаимодействия между компонентами

    В отечественной литературе широко применяется термин «биогеоценоз», предложенный в 1940 г.B . Н Сукачевым. По его определению, биогеоценоз — «совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий), имеющая особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и другими явлениями природы и представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении, развитии».

    В биогеоценозе В.Н. Сукачев выделял два блока: экотоп — совокупность условий абиотической среды и биоценоз — совокупность всех живых организмов (рис. 8.1). Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп — как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов.

    Существует мнение, что термин «биогеоценоз» в значительно большей степени отражает структурные характеристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается, прежде всего, ее функциональная сущность. Фактически же между этими терминами различий нет.

    Следует указать, что совокупность специфического физико-хи- мического окружения (биотопа) с сообществом живых организмов (биоценозом) и образует экосистему:

    Экосистема = Биотоп + Биоценоз.

    Равновесное (устойчивое) состояние экосистемы обеспечивается на основе круговоротов веществ (см. п. 1.5). В этих круговоротах непосредственно участвуют все составные части экосистем.

    Для поддержания круговорота веществ в экосистеме необходимо наличие запаса неорганических веществ в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

    Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений (рис. 8.2).

    Рис. 8.2. Продуценты

    Консументы - гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы.

    Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов в течение жизни, выделяя в окружающую среду минеральные продукты обмена веществ.

    В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена — консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

    Масштабы экосистемы в природе весьма различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т.е. многократность вовлечения одних и тех же элементов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

    В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, озера и т.п.).

    Экосистема — практически замкнутая система. В этом состоит принципиальное отличие экосистем от сообществ и популяций, являющиеся открытыми системами, обменивающимися со средой обитания энергией, веществом и информацией.

    Однако ни одна экосистема Земли не имеет полностью замкнутого круговорота, поскольку минимальный обмен массой со средой обитания все-таки происходит.

    Экосистема является совокупностью взаимосвязанных энергопотребителей, совершающих работу по поддержанию ее неравновесного состояния относительно среды обитания за счет использования потока солнечной энергии.

    В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Экосистемная организация жизни является одним из необходимых условий ее существования. Как уже отмечалось, запасы биогенных элементов, необходимых для жизни организмов на Земле в целом и на каждом конкретном участке на ее поверхности, небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни.

    Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы — древнейшее свойство жизни.

    С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

    Концепция экосистемы

    Основным объектом изучения экологии являются экологические системы, или экосистемы. Экосистема занимает следующее после биоценоза место в системе уровней живой природы. Говоря о биоценозе, мы имели в виду только живые организмы. Если же рассматривать живые организмы (биоценоз) в совокупности с факторами окружающей среды, то это уже экосистема. Таким образом, экосистема — природный комплекс (биокосная система), образованный живыми организмами (биоценоз) и средой их обитания (например, атмосфера — косной, почва, водоем — биокосной и т.д.), связанными между собой обменом веществ и энергии.

    Общепринятый в экологии термин «экосистема» ввел в 1935 г. английский ботаник А. Тенсли. Он считал, что экосистемы, «с точки зрения эколога представляют собой основные природные единицы на поверхности земли», в которые входит «не только комплекс организмов, но и весь комплекс физических факторов, образующих то, что мы называем средой биома, — факторы местообитания в самом широком смысле». Тенсли подчеркивал, что для экосистем характерен разного рода обмен веществ не только между организмами, но и между органическим и неорганическим веществом. Это не только комплекс живых организмов, но и сочетание физических факторов.

    Экосистема (экологическая система) — основная функциональная единица экологии, представляющая собой единство живых организмов и среды их обитания, организованное потоками энергии и биологическим круговоротом веществ. Это фундаментальная общность живого и среды его обитания, любая совокупность совместно обитающих живых организмов и условий их существования (рис. 8).

    Рис. 8. Различные экосистемы: а — пруда средней полосы (1 — фитопланктон; 2 — зоопланктон; 3 — жуки-плавунцы (личинки и взрослые особи); 4- молодые карпы; 5 — щуки; 6 — личинки хорономид (комаров-дергунцов); 7- бактерии; 8 — насекомые прибрежной растительности; б — луга (I — абиотические вещества, т.е. основные неорганические и органические слагаемые); II- продуценты (растительность); III- макроконсументы (животные): А — травоядные (кобылки, полевые мыши и т.д.); В — косвенные или питающиеся детритом консументы, или сапробы (почвенные беспозвоночные); С- «верховые» хищники (ястребы); IV- разлагатели (гнилостные бактерии и грибы)

    Понятие «экосистема» можно применить к объектам различной степени сложности и величины. Примером экосистемы может служить тропический лес в определенном месте и в конкретный момент времени, населенный тысячами видов живущих вместе растений, животных и микробов и связанный происходящими между ними взаимодействиями. Экосистемами являются такие природные образования, как океан, море, озеро, луг, болото. Экосистемой может быть кочка на болоте и гниющее дерево в лесу с живущими на них и в них организмами, муравейник с муравьями. Самой большой экосистемой является планета Земля.

    Каждая экосистема может характеризоваться определенными границами (экосистема елового леса, экосистема низинного болота). Однако само понятие «экосистема» безранговое. Она обладает признаком безразмерности, ей не свойственны территориальные ограничения. Обычно экосистемы разграничиваются элементами абиотической среды, например рельефом, видовым разнообразием, физико-химическими и трофическими условиями и т.н. Размер экосистем не может быть выражен в физических единицах измерения (площадь, длина, объем и т.д.). Он выражается системной мерой, учитывающей процессы обмена веществ и энергии. Поэтому под экосистемой обычно понимают совокупность компонентов биотической (живые организмы) и абиотической среды, при взаимодействии которых происходит более или менее полный биотический круговорот, в котором участвуют продуценты, консументы и редуценты. Термин «экосистема» применяется и по отношению к искусственным образованиям, например экосистема парка, сельскохозяйственная экосистема (агроэкосистема).

    Экосистемы можно разделить на микроэкосистемы (дерево в лесу, прибрежные заросли водных растений), мезоэкосистемы (болото, сосновый лес, ржаное поле) и макроэкосистемы (океан, море, пустыня).

    О равновесии в экосистемах

    Равновесными называются такие экосистемы, которые «контролируют» концентрации биогенов, поддерживая их равновесие с твердыми фазами. Твердые же фазы (остатками живых организмов) являются продуктами жизнедеятельности биоты. Равновесными будут и те сообщества и популяции, которые входят в равновесную экосистему. Такой вид биологического равновесия называется подвижным , поскольку процессы отмирания непрерывно компенсируются появлением новых организмов.

    Равновесные экосистемы подчиняются принципу устойчивости Лe Шателье. Следовательно, эти экосистемы обладают гомеоста- зом, — иными словами, способны минимизировать внешнее воздействие при сохранении внутреннего равновесия. Устойчивость экосистем достигается не смещением химических равновесий, а путем изменения скоростей синтеза и разложения биогенов.

    Особый интерес представляет способ поддержания устойчивости экосистем, основанный на вовлечении в биологический круговорот органического веществ, ранее произведенного экосистемой и отложенного «про запас» — древесины и мортмассы (торф, гумус, подстилка). В этом случае древесина служит как бы индивидуальным материальным богатством, а мортмасса — коллективным, принадлежащим экосистеме в целом. Это «материальное богатство» увеличивает запас устойчивости экосистем, обеспечивая их выживание при неблагоприятных изменениях климата, стихийных бедствиях и др.

    Устойчивость экосистемы тем больше, чем больше она по размеру и чем богаче и разнообразнее ее видовой и популяционный состав.

    Экосистемы разного типа используют различные варианты индивидуальных и коллективных способов запасания устойчивости при различном соотношении индивидуального и коллективного материального богатства.

    Таким образом, основная функция совокупности живых существ (сообщества), входящих в экосистему, — обеспечить равновесное (устойчивое) состояние экосистемы на основе замкнутого круговорота веществ.

    На Земле возникали озера в результате тектонических сдвигов породы, отступления ледников при таянии или изменения русел рек. К ним можно относить пруды, более мелкие водные образования. Общее у них, то, что это замкнутые экосистемы с тенденцией к исчезновению.

    Неважно, является водоем сточным, то есть из которого вытекает вода, или бессточным, экосистема озера постепенно будет трансформироваться в сторону преобладания в ней растительного над животным миром. Затем превратиться в болото и, в конце концов, высохнет и исчезнет. Быстрота такого превращения зависит лишь от величины и глубины водного объекта.

    Структура системы и основные факторы влияния

    Экосистема озера представляет собой видовую совокупность, существующую в границах водного объекта, и взаимодействующая между собой. Трофическая цепь типичная и состоит из продуцентов – растений и водорослей, консументов – рыбы, рептилии, водоплавающей птицы, некоторые видов животных, а также редуцентов – бактерий, червей и ракообразных.

    Схематическая иллюстрация экосистемы озера.

    Соленая в озере вода или пресная, влияет только на видовую структуру, в которой преобладают живые организмы, приспособленные к существованию в воде с большим или меньшим содержанием соли.


    Основными факторами, влияющими на систему, являются солнце, температура воды и количество содержащегося в ней кислорода.

    Главным и определяющим из них – солнце. Вступая во взаимодействие с водой, солнечная энергия изменяет, а именно повышает, температуру последней. Это, в свою очередь, влияет на процесс фотосинтеза, то есть производства кислорода, его содержание и растворимость в воде.

    По количеству поступающей солнечной энергии, водную массу озера можно разделить на горизонтальные слои или пласты.

    В летний период верхний слой получает максимальное количество солнечной энергии. Он нагревается. Продуценты активно перерабатывают солнечную энергию в кислород. Фауна в верхнем слое играет роль консументов. Это в основном водоплавающие животные и птицы, рептилии, некоторые виды рыб и насекомые.

    Следующий пласт воды играет «заградительную» функцию между разными температурными слоями, расположенными над и под ним. Этот слой с максимальной плотностью воды, которая возникает, когда температура ее +4°С. Он сдерживает перемешивание слоев воды озера. Обычно перемешивание происходит весной и осенью. В результате чего происходит обмен кислородом и питательными веществами.

    Солнечный свет, доходя до придонного слоя, сильно рассеивается. На дно попадают остатки живых организмов и отходы их жизнедеятельности. Придонный слой населяют редуценты – раки, черви, личинки насекомых, бактерии и микроорганизмы. Очень редки рыбы. Главная их функция переработка органических отходов. Последний этап пищевой цепи, перед началом нового.

    На этом этапе и происходит тот сбой, который, в конечном счете ведет к исчезновению озера. Условия существования не позволяют справиться с переработкой отходов полностью. А верхний слой, подпитанный во время перемешивания, увеличивает биомассу. Отходы увеличиваются, а остатки накапливаются. Они превращаются в ил, а затем в торф. Озеро начинает мелеть и исчезать.

    Использование человеком

    Использование озера человеком можно описать предельно коротко. Человек берет из него воду и пищу, и возвращает неочищенную воду и отходы.

    Перед тем как полностью исчезнуть, озеро превращается в болото. Донный ил становится торфом. Торф обладает способностью сохранять влагу. Накапливая ее в период таяния снегов или дождей, он затем отдает ее ручьям и тем поддерживают уровень воды в больших водоемах и в грунтовых водах. Человек добывая торф, как природное топливо или удобрение, проводя мелиоративные работы и осушая болота, изменяет водный режим региона со всеми вытекающими отсюда последствиями.


    Экосистема озера не содержит фосфор, азот и другие вещества, стимулирующие рост растений. Сточные воды промышленных предприятий, сбросы канализационных систем городов, неочищенные бытовые стоки и, главное, вода, сходящая после ливней и таяния снегов с земель, используемых под сельскохозяйственные нужды, содержит эти вещества. А они ускоряют рост и увеличивают количество биомассы, особенно сине-зелёных водорослей.

    Тот же эффект при сбросе теплой воды, после охлаждения ею оборудования электростанций. Повышение температуры воды в результате таких сбросов ускоряет рост все тех же водорослей и других растений. Если температура будет слишком велика, то животный мир может вообще погибнуть или произойти сбой в его репродуктивной системе.

    Но самое основное – это нарушается ритма весеннего и осеннего перемешивания вод, в результате чего придонные слои не будут получать необходимый запас кислорода.

    Еще одна форма использования человеком экосистемы озера – это привнесение в нее живых организмов, ей несвойственных. Иногда это может произойти случайно. Но бывает, что это делается преднамеренно, с целью разведения полезных для человека видов рыб, моллюсков, беспозвоночных и тому подобное.

    Эти организмы ведут себя агрессивно по отношению к местным видам флоры и фауны. А с учетом стимулирования их роста и развития человеком, то природная биосистема начинает подвергаться существенным изменениям. Происходит дисбаланс, который может привести к ее полной гибели. Примером могут служить Великие озера в Америке.

    Вам будет интересно посмотреть фото и картинки экосистемы озера.

    Посмотрите видео: Красивые фото озер, рек и морей.

    По своему строению и принципу действия природные экосистемы являются открытыми системами. Неотъемлемое условие их функционирования заключается в возможности отдавать и получать различные виды энергии и ресурсов. Без этого вечного круговорота Земли рано или поздно исчерпались бы. Кроме того, экосистемой считается только та система, которая способна существовать без внешнего вмешательства. Все необходимое для функционирования она производит сама. Для поддержания непрерывного потока веществ в любой отдельно взятой экосистеме должны присутствовать функционально разные группы живых организмов.

    По размеру занимаемой территории, а также количеству вовлеченных в круговорот элементов живой и неживой природы различают системы четырех видов. В самом низу находится микроэкосистема, простейшим примером которой может послужить капля человеческой крови или воды из реки. Далее следуют мезоэкосистемы. К данной категории относится экосистема озера, водоема, прерии, степи или, например, леса. На третьем месте находятся макроэкосистемы, которые представляют собой целые континенты и океаны. И самой крупной экосистемой считается сама планета Земля, точнее сказать - вся жизнь на ней. Данная система носит название глобальной.

    Структура экосистемы

    Основным источником энергии в озере является солнечный свет. Когда лучи проходят через толщу воды, большую часть энергии поглощает планктон, чтобы затем использовать ее для процессов фотосинтеза. Оставшийся свет постепенно поглощается самой водой. Поэтому освещенность на верхних уровнях всегда большая, а ближе ко дну уменьшается. Любая достаточно крупная экосистема озера имеет так называемый компенсационный уровень. Это глубина, которой достигает минимально необходимое растениям количество света. Фотосинтез у таких растений замедляется, чтобы уравновесить другие показатели - дыхание и расход пищи.

    Расположение компенсационного уровня напрямую зависит от свойств воды, ее чистоты и прозрачности. Он является некой условной разделительной линией. Выше нее растения вырабатывают избыточное количество кислорода, которым затем пользуются другие живые организмы. А ниже разделительной линии кислорода, наоборот, слишком мало. Основная его часть попадает на глубину из других, верхних слоев воды. Таким образом, ниже компенсационного уровня обитают только те живые организмы, которые могут обходиться минимальным количеством кислорода.

    Общее распределение обитателей

    Очевидно, что на верхних уровнях экосистема озера заселена куда большим разнообразием видов, чем в придонной зоне. Данный факт обусловлен более благоприятными условиями для жизни, количеством пищи, тепла и кислорода на мелководных участках. Там во множестве обитают укореняющиеся лилии, камыши, тростник, стрелолист.

    Они, в свою очередь, служат убежищем для насекомых и членистоногих, червей, моллюсков, головастиков. Также здесь находят себе пищу многие виды рыб. Самые мелкие членистоногие, для существования которых требуется большое количество света, живут у самой поверхности. Здесь же произрастает свободно плавающая ряска.

    На своих нижних уровнях озерная экосистема становится местом обитания для разного рода редуцентов, питающихся отмершими останками животных и растений. Также здесь обитают многие хищные виды рыб, такие как щука и окунь, и некоторые беспозвоночные организмы. Эти виды или питаются опускающимися с верхних слоев воды мертвыми существами или охотятся друг на друга.

    Влияние загрязнения на озерные экосистемы

    Одним из важнейших природных элементов для таких систем является фосфор. От его количества зависит общая Естественное содержание данного вещества в озерной воде невелико, но человеческая деятельность приводит к значительному увеличению концентрации. К основным причинам следует отнести попадающие в озеро слив избыточное использование удобрений, которые затем смываются дождями и подземными потоками. Все это привносит в экосистему несвойственное ей избыточное количество фосфора.

    В результате нарушается структура и продуктивность отлаженной системы: начинает стремительно возрастать количество планктона, от которого вода приобретает мутно-зеленоватый оттенок. Озеро начинает «цвести», но это только первая стадия. Далее оно загрязняется элементами питания, воды становятся менее насыщенными кислородом и солнечным светом (планктон в огромных количествах поглощает то, что должны были получить другие обитатели). Последнее нарушает деятельность редуцентов, из-за чего вода наполняется медленно гниющими останками. На финальной стадии растения начинают вырабатывать токсины, вызывающие массовую гибель рыбы.

    Другой вид загрязнения, из-за которого существенно страдает экосистема озера - тепловое. На первый взгляд оно не кажется серьезным: не добавляет в воду никаких химических веществ. Но ведь нормальное функционирование системы зависит не только от состава среды, но и от температуры. Ее повышение также способно спровоцировать рост растений, который запускает медленную, но верную гибельную реакцию. Кроме того, отдельные виды рыб и беспозвоночных приспособлены к жизни в узких температурных рамках. Повышение или понижение температуры в этом случае замедляет рост организмов или убивает их.

    Данный вид загрязнения возникает в результате промышленной деятельности человека. Например такой, которая использует озерную воду для охлаждения турбин на заводах и электростанциях.

    ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ОЗЕР И ОЗЕРНЫХ ЭКОСИСТЕМ

    1. Некоторые физические процессы, формирующие структуру вод в озерах

    Многие современные методы исследования и моделирования рассматривают озеро как простой "черный ящик" или "хорошо перемешиваемый реактор", где, в процессе исследования, ученые изучают зависимости между биохимическими процессами и физической стратификацией (слоистым строением) в них (Хендерсон–Селлерс, Маркленд, 1990).

    Пресная вода - уникальное вещество. Наибольшую плотность она имеет при 4оС, что предохраняет от промерзания даже относительно неглубокие водоемы, так как более холодная вода и образующийся затем лед имеют меньшую плотность и "плавают" на поверхности. Такая связь плотности и температуры воды обусловлена особенностями ее молекулярного строения. В результате формируется термически стратифицированный водоем как летом, так и (возможно) зимой (обратная стратификация).

    Стратификация озер имеет сезонный цикл. Весной и летом, с повышением температуры воздуха, происходит прогревание озер. При этом поверхностные слои получают больше тепла, чем глубинные. Так как в итоге данного процесса воды поверхностного слоя становятся менее плотными и менее стабильными, возникает стратификация толщи воды. Поскольку весной и летом указанный процесс развивается, глубина прогретого слоя увеличивается; этому способствует конвективное турбулентное перемешивание и молекулярная теплопроводность, ветровое перемешивание и увеличивающиеся температуры воздуха. Образованный таким образом слой называется эпилимнионом, глубина его редко превышает 25 м. В пределах эпилимниона ветровое и конвективное перемешивание распределяет тепло по всей глубине, создавая относительно изотермические условия. По этим причинам эпилимнион часто называют слоем перемешивания (Чеботарев, 1955; Зенин, Белоусова, 1988; Хендерсон–Селлерс, Маркленд, 1990) .

    Ниже эпилимниона температура воды быстро снижается, потому что нижние слои получают значительно меньше солнечного тепла и не подвержены ветровому перемешиванию. Эта область резкого снижения температуры, расположенная над гиполимнионом, называется металимнионом (термоклин - приурочен к глубине, на которой отмечаются наибольшие изменения температуры).

    Гиполимнион - включает самые холодные воды и является относительно изотермичным. В этой области температурные изменения в течение всего года минимальны, течения отсутствуют. Термоклин (его толщина обычно 2–5 м) является эффективным барьером для перемешивания вод между эпи– и гиполимнионом из–за резких градиентов температуры. В итоге, озеро в целом представляет собой динамически устойчивую систему.

    Осенью, когда температура воздуха снижается, озеро начинает отдавать тепло в атмосферу. При выхолаживании плотность верхних слоев возрастает, и они перемещаются через эпилимнион до глубины равновесия. Неустойчивость такого типа является причиной возникновения течений, которые в конце концов разрушают термоклин и приводят к изотермическим условиям в озере. Следствием этого "переворота" является чрезмерное помутнение воды, вызванное взмучиванием донных отложений, а также увеличение доступности биогенных веществ в эвфотической зоне (в ней интенсивность фотосинтеза превосходит интенсивность дыхания растений); глубина данной зоны (толщина слоя) в разных типах водоемов имеет свои специфические параметры.

    В некоторых мелких озерах эпилимнион может быть полностью замещен гиполимнионом (или наоборот), так что озеро становится относительно однородным в течение всего года - наблюдается гомотермия. В таких озерах продолжается непрерывное перемешивание, вызываемое конвекцией и турбулентностью, индуцируемой ветровым воздействием, способствует продолжительной замутненности воды (Чеботарев, 1955; Зенин, Белоусова, 1988; Хендерсон–Селлерс, Маркленд, 1990).

    После того, как достигается однородный профиль температуры, озеро продолжает охлаждаться и конвективные течения достигают дна. Однородность, таким образом, устанавливается и поддерживается до тех пор, пока не будет достигнута температура максимальной плотности воды (отмеченное явление никогда не происходит в озерах, расположенных в теплых климатических зонах). Если температура вод поверхностного слоя ниже 4оС, то аномальные вариации плотности воды от температуры предопределяет, что эти более холодные воды станут менее плотными, приводя к увеличению стабильности, при которой температурный профиль показывает обратную стратификацию. Воды поверхностного слоя в конце концов замерзнут. Однако вследствие того, что этот более холодный слой расположен на поверхности, нижележащие слои будут иметь температуру около 4оС и не замерзнут. Таким образом озеро приобретает ледяной покров. Он образуется только тогда, когда вода озера, промерзающего до определенной глубины, потеряет достаточно тепла. Лед эффективно защищает водные массы от ветрового перемешивания.

    Весной, когда количество тепла увеличивается, лед тает (если он был, конечно). Поскольку поверхность озера нагревается, вновь возникает неустойчивый профиль температуры, однако последующие весенние конвективные движения проникают на меньшую по сравнению с осенью глубину. Спустя некоторое время, в период, примерно соответствующий весеннему равноденствию, водные массы вновь становятся однородными по температуре. Этому моменту соответствует последний этап полного годового цикла стратификации (Чеботарев, 1955; Зенин, Белоусова, 1988; Хендерсон–Селлерс, Маркленд, 1990).
    Озера, где наблюдаются осенние и весенние конвективные перемешивания вод называются димиктичными. Озера, где отмечается только весеннее перемешивание вод и температура воды никогда не превышает 4оС, называют холодными мономиктичными (в теплых климатических зонах, где вода всегда превышает 4оС - озера являются теплыми мономиктичными).

    Перемешивание вод в озерах является, таким образом, функцией (следствием) места их расположения. В тропической и экваториальной областях, где поступление солнечного тепла почти не изменяется в течение года, гиполимнион редко намного холоднее эпилимниона; поэтому даже небольшое выхолаживание вызывает конвективные движения воды из–за слабовыраженного термоклина. Такие озера называют полимиктичными (перемешивание вод здесь часто является результатом сильных ветров и небольших сезонных изменений температуры воздуха). Есть и другие типы озер (Хендерсон–Селлерс, Маркленд, 1990), которые не приводим и не рассматриваем.

    2. Основные источники поступления биогенов в озера

    Пресные озера (водохранилища) содержат 0,009% мировых запасов воды и 1,4% запасов пресной воды. В последние столетия, пресноводные озера и водохранилища деградируют и исчезают со все более увеличивающейся скоростью. Деятельность человека и его пассивность - главные причины быстрой деградации водоемов. Начиная с 1960–х годов взгляды человека на отношение к окружающей природной среде постепенно меняются. Сейчас уже признается всеми, что природные ресурсы истощаемы и их необходимо оберегать от чрезмерной эксплуатации.

    Все озера по их состоянию воды, флоры и фауны подразделяются на несколько групп: олиготрофные, мезотрофные, эвтрофные и другие (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999). Но следует иметь ввиду, что эта классификация является одновременно и субъективной и относительной, поскольку категория "трофность" включает локальные требования и отражает различие озер в относительно небольших регионах (Хендерсон–Селлерс, Маркленд, 1990).

    Главная проблема озер - эвтрофирование. Это повышение уровня первичной продукции за счет увеличения поступления биогенных веществ, главным образом азота и фосфора. Переход водоемов от олиготрофного состояния через мезотрофное в эвтрофное связан с накоплением в них донных отложений и уменьшением водной толщи, в которой при прежней скорости поступления биогенов увеличивается их концентрация. Различают естественное (длится тысячелетиями и, даже, геологическими периодами) и антропогенное эвтрофирование, которое может происходить очень быстро, особенно в водоемах с замедленным стоком.

    По существу, эвтрофирование - это термин, означающий старение озера. "Молодое" озеро - олиготрофное, содержит небольшое количество биогенных веществ, которое способно поддерживать только низкий уровень биомассы. Природные процессы, такие, как ветровая эрозия или вымывание дождевыми водами, обеспечивают вынос биогенных веществ в водную среду, что поддерживает развитие растений и животных.

    Поступление биогенных веществ в водоем всегда превышает их потери из него, что приводит к "чистому" накоплению этих веществ в водоеме. В нем начинается образование осадков, обычно со средней скоростью 0,2–2,0 мм/год и более. По мере развития осадконакопления глубина озера уменьшается и корневая (литоральная) растительность начинает вторгаться на ранее открытые участки водной поверхности. Озеро проходит через среднюю стадию - становится мезотрофным и в конце концов становится "старым" водоемом, который называют эвтрофным. В геологическом смысле подобное озеро вскоре исчезнет.
    В проточных (реках, ручьях) и слабопроточных водоемах с замедленным стоком (озера, водохранилища, пруды, внутренние моря) скорость поступления биогенных веществ может превышать скорость их разложения в результате дополнительного антропогенного поступления, приводя к эвтрофированию и увеличению биомассы.

    Большая часть биогенных веществ поступает в озеро с поверхностным и подземными стоками (реки, ручьи, ключи и т. д.), а остальная часть - непосредственно с осадками и выпадением различных частиц из атмосферы. Поэтому важно понять взаимодействие между водой и биогенными веществами на водосборных территориях. Доступность биогенных веществ в озерах и их потребление регулируется некоторыми гидрологическими процессами, а также биологическими факторами (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999).

    В экосистеме, лимитированной по фосфору, снижение его концентрации приводит к ограничению роста растений и водорослей. В таких условиях процесс эвтрофикации замедляется и даже становится обратимым.

    Системы, лимитированные по азоту, часто представляют собой более серьезную проблему в сравнении с водоемами, лимитируемыми по фосфору, поскольку источники этого биогенного элемента труднее контролировать.
    Присутствие в воде озер кремния вызывает особый интерес, так как он необходим для развития диатомовых водорослей, популяция которых достигает, как правило, максимума весной. Когда количество кремния истощается, наступает быстрое снижение или "гибель" популяции диатомовых. Диоксид кремния существенен для построения панцырей диатомовых водорослей. Летом после отмирания диатомовых кремний медленно переходит обратно в воду, хотя определенная его часть захороняется в донных илах.

    Окислительно–восстановительный цикл железа является важнейшим компонентом биохимии озер, так как он связан с окислительно–восстановительным потенциалом (редокс–потенциалом) и рН водной среды.
    Марганец - это очень важный биогенный элемент, однако редкий, даже если он и является лимитирующим. Работы по изучению форм нахождения марганца идентифицируют два основных источника его поступления: с водами притоков в озера и выделением из донных отложений.

    Донные отложения в водоемах формируются из двух основных источников: 1 - внос аллохтонного вещества (внешнего по отношению к озерной системе) обеспечивает поступление в водоем неорганических частиц и некоторых органических веществ (дождливая погода увеличивает перенос наносов и эрозию); 2 - "дождь" отмершего органического вещества из водных масс озера (это второй по значению вклад в донные отложения).

    В озерах имеет место постоянный обмен биогенными веществами между донными отложениями и прилегающей к ним водой, который в своей основе является диффузным процессом. Этот процесс может быть усилен или дополнен другими факторами (Хендерсон–Селлерс, Маркленд, 1990): турбулентностью (физические нарушения и вымывание донных отложений), биотурбулентностью (вызывается биологическими силами - воздействием роющих организмов, червей, рыб, птиц и др.), биотическим удалением (рост растений из донных отложений), уплотнением (биогенные вещества выдавливаются через поры с водой), окислительно–восстановительным потенциалом (например, обогащенные железом отложения, имеют свойство адсорбировать фосфор в аэробных и выделять его в анаэробных условиях) и биологическим окислением (разложение органического вещества бактериями, которые трансформируют биогенные вещества в неорганическую биологически доступную форму).

    3. Функционирование экосистемы озера, расположенного в умеренном поясе

    Физическая среда, или биотоп вместе с населяющими его видами, составляющими биоценоз, образует экосистему (биогеоценоз). Водные системы (реки, озера, моря и т. д.) - представляют собой хорошие примеры экосистем, т. к. они имеют совершенно четкие границы и населены водными обитателями, не способными жить на соседней суше. Водные системы очень удобны для изучения и потому, что между ними и сушей, как правило, наблюдается слабый обмен (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Зенин, Белоусова, 1988; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999).

    Прежде, чем перейти к изложению материалов о нагульно–нерестовых водоемах тихоокеанских лососей, рассмотрим пример экосистемы - озера, расположенного в умеренном поясе (Дрё, 1976), к каковым относится большинство озер в рассматриваемых нами регионах.

    В состав флоры озерных систем входят ряд водных растений, относящихся к разным группам цветковых, одни из которых растут на берегу, другие - в воде. Но основная часть растительной массы в озерах преставлена микроскопическими водорослями - диатомовыми (Bacilariophyta), синезелеными (Cyanophyta), зелеными (Chlorophyta), золотистыми (Chrysophyta), динофитовыми (Dinophyta) и др. Все эти растения благодаря энергии солнечного света, легко проникающего на определенную глубину (в разных озерах - она может различаться), поглощают минеральные соли и углекислый газ, растворенные в воде, и синтезируют из них собственное вещество, растут и размножаются.

    Все растения: травы и крупные водоросли прибрежной зоны, а также микроскопические водоросли, парящие в толще воды - фитопланктон, и растущие на освещенных участках дна - микрофитобентос, в совокупности, называются первичными продуцентами. Ими производится подавляющая часть органического вещества в водоемах. Только растения, из всего содержащегося или обитающего в водных системах, создают органическое вещество за счет неорганического при участии солнечной энергии. В целом масса взвешенных в воде микроскопических водорослей приблизительно соответствует общей концентрации растворенных в воде солей, достигающей максимума весной и осенью (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999).

    Биогенные вещества - это компоненты, которые первичные продуценты утилизируют для жизнедеятельности и размножения. Рост водорослей основан на потреблении, по крайней мере, 19 биогенных элементов, хотя большая их часть требуется в следовых количествах.

    В дополнение к трем основным жизненно важным компонентам (углерод, водород и кислород) первичным продуцентам требуются и другие биогенные вещества в сравнительно больших количествах. Среди них макроэлементы (натрий, кальций, фосфор, магний, кремний, азот, фосфор и сера).

    Остальные элементы требуются в меньших количествах и называются микроэлементами (медь, железо, цинк, хлор, бор, молибден, кобальт, ванадий, марганец). Недостаток любого из этих элементов лимитирует развитие первичных продуцентов. В большей части водных систем такими лимитирующими биогенными элементами является - фосфор; либо, в меньшей степени, - азот (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999).

    Фитопланктоном питаются очень многие животные, чаще всего мелкие, неспособные к большим и быстрым передвижениям. Они, также как и организмы фитопланктона, не способны противостоять переносу течениями. В совокупности, мелкие животные в озерах - образуют зоопланктон. Это в основном веслоногие (Copepoda) и ветвистоусые (Cladocera) рачки, первичнополостные черви - коловратки (Rotatoria); сюда же входят мелкие личинки ряда видов насекомых, например комаров.

    Следует заметить, что отдельные виды рыб также используют в питании фитопланктон. Животные, питающиеся фитопланктоном, - это первичные консументы т. к. они используют уже готовое органическое вещество, ограничиваясь его преобразованием; но создать заново органическое вещество они не способны.

    Самые мелкие из первичных консументов (Copepoda, Cladocera и Rotatoria и др.), появляются в огромных количествах обычно тогда, когда много пищи; следовательно в своем развитии они вцело следуют за развитием фитопланктона. Напротив рыбы, питающиеся фитопланктоном, но обладающие значительной продолжительностью жизни, способны подолгу голодать или менять объекты питания.Зоопланктон, в свою очередь, служит пищей более крупным животным (личинки насекомых, многие виды рыб, некоторые виды птиц). Всех таких плотоядных животных, т. е. питающихся другими животными, называют вторичными консументами. Отсюда видно, что живые существа, относящиеся к различным систематическим группам, могут играть в экосистемах одинаковую роль - все они принадлежат к одному пищевому, или, как чаще говорят, трофическому уровню. Трофические уровни связаны между собой зависимостями, складывающихся из элементарных связей в виде цепочки - все они вместе образуют так называемую пищевую цепь, звенья которой зависят друг от друга: исчезновение фитопланктона приводит к исчезновению зоопланктона, а значит и вторичных консументов (рисунок).

    Описанная выше пищевая цепь играет в озерах доминирующую роль. Но помимо нее, в озерах существует немало других пищевых цепей. Например, на прибрежных растениях, наполовину находящихся под водой, на их надводных частях живут насекомые–фитофаги, питающиеся листьями. За счет этих насекомых, в свою очередь, кормятся птицы. Подводные части растений обгладывают водные насекомые и их личинки (например, жуки–водолюбы), а также брюхоногие моллюски типа прудовиков и катушек.

    Растительная пища далеко не полно переваривается первичными консументами. В экскрементах последних содержится еще много растительных органических веществ, особенно легко усвояемых благодаря тому, что они размельчены в пищеварительном канале. Ими питается большое число видов, среди которых в основном преобладают равноногие ракообразные (называемые в обиходе червями). Пройдя через их пищеварительный канал, остатки органической пищи становятся добычей бактерий, которые окончательно разлагают их до минеральных солей и углекислого газа, вновь используемых растениями. Отсюда видно, что в природе существуют также пищевые цепи деструкторов, которые полностью разлагают органическое вещество.

    Понятие пищевой цепи удобно для изложения, оно соответствует в отдельных случаях и реально наблюдаемым явлениям, но в целом носит несколько упрощенный характер. Точнее было бы говорить об очень сложной трофической сети, объединяющей все виды, обитающие в озерах, и охватывающие все совершающиеся в них обменные процессы.

    Таким образом, непрерывный поток материи и энергии постоянно пронизывает экосистему. Если экосистема стабильна, то ее можно сравнить с большой трубой, в один конец которой поступают минеральные соли и солнечная энергия, а из другого выходит живое вещество. Последнее может быть использовано внешними хищниками, например человеком, который, вылавливая из озера рыбу и поедая ее, составляет последнее звено пищевой сети. Человек в данном случае играет роль третичного или четвертичного консумента, но не будем упускать из вида, что собирая кресс–салат на берегах озера по примеру многих других организмов, он может быть и первичным консументом (Дрё, 1976).

    В нерковых озерах основным источником "нового" органического вещества является фитопланктон.

    Литература

    Бугаев В.Ф., Кириченко В.Е. 2008. Нагульно-нерестовые озера азиатской нерки (включая некоторые другие водоемы ареала) // Петропавловск-Камчатский: Изд-во "Камчатпресс". - 280 с.

    На фото: колониальная водоросль - Cфероносток сливовидный Sphaeronostoc priniforme. На Камчатке известен из оз. Налычевского и мелководных озер в бассейне р. Правый Кихчик (фото Д. Гимельбранта)

    Водной называется экосистема, для которой естественной средой обитания является вода. Именно она определяет уникальность той или иной экосистемы, видовое разнообразие и ее устойчивость.

    Главные факторы, которые влияют на водную экосистему:

    1. Температура воды
    2. Ее химический состав
    3. Количество солей в воде
    4. Прозрачность воды
    5. Концентрация в воде кислорода
    6. Доступность питательных веществ.

    Компоненты водной экосистемы делятся на два вида: абиотические (вода, свет, давление, температура, состав почвы дня, состав воды) и биотеческие. Биотика, в свою очередь, разделяется на следующие подвиды:

    Продуценты — организмы, производящие органические вещества с помощью солнца, воды и энергии. В водных экосистемах продуцентами являются водоросли, в мелководных водоемах — прибрежные растения.

    Редуценты — организмы, потребляющие органику. Это разнообразные виды морских животных, птиц, рыб, земноводных.

    Основные типы водных экосистем

    В экологии водные экосистемы принято разделять на пресноводные и морские. В основе этого деления лежит показатель солености воды. Если в литре воды содержится более 35% солей — это морские экосистемы.

    К морским относятся океаны, моря, соленые озера. К пресноводным — реки, озера, болота, пруды.

    Еще одна классификация водных экосистем базируется на таком признаке, как условия создания. Здесь выделяют природные и искусственные. Природные созданы при участии сил природы: моря, озера, реки, болота. Искусственные водные экосистемы создает человек: искусственные пруды, водохранилища, дамбы, каналы, водные фермы.

    Естественные водные экосистемы

    Пресноводные экосистемы

    Пресноводные экосистемы — это реки, озера, болота, пруды. Все они занимают лишь 0,8% поверхности нашей планеты. Хотя в пресных водоемах обитает более 40% известных науке рыб, пресноводные экосистемы все равно значительно уступают в видовом разнообразии морским.

    Главным критерием отличия пресноводных водоемов является скорость течения воды. В этой связи выделяют стоячие и проточные. К стоячим относятся болота, озера и пруды. К проточным — реки и ручьи.
    Для стоячих водных экосистем характерна ярко выраженное распределение биотических организмов в зависимости от слоя воды:

    В верхнем слое (литорали) главным компонентом является планктон и прибрежные заросли растений. Это царство насекомых, личинок, здесь обитают черепахи, амфибии, водоплавающие птицы, млекопитающие. Верхний слой водоемов является охотничьими угодьями для цапель, журавлей, фламинго, крокодилов, змей.

    Средний слой водоема называется профундаль. Он получает намного меньше солнечного света, а питанием служат вещества, оседающие их верхнего слоя воды. Здесь обитают хищные рыбы.

    Нижний слой воды называется бенталь. Огромную роль играет состав почвы, ила. Это место обитания придонных рыб, личинок, моллюсков, ракообразных.

    Морские экосистемы

    Самой большой морской экосистемой является Мировой океан. Он подразделяется на более мелкие: океаны, моря, соленые озера. Все они занимают свыше 70% поверхности нашей планеты и являются важнейшей составляющей частью гидросферы Земли.

    В морских экосистемах главным компонентом, продуцирующим кислород и питательные вещества, является фитопланктон. Он формируется в верхнем слое воды и под действием солнечной энергии вырабатывает питательные вещества, которые потом оседают в более глубокие слои водоема и служат питанием для остальных организмов.

    Большие морские экосистемы — это океаны. В открытом океане видовое разнообразие невелико по сравнению с прибрежными зонами. Основная масса живых организмов сосредоточена на глубинах до 100 метров: это различные виды рыб, моллюсков, кораллы, млекопитающие. В прибрежных зонах морских экосистем видовое разнообразие дополняется многочисленными видами морских животных, амфибий, птиц.

    В прибрежных зонах морских экосистем выделяют более мелкие (по территории): мангровые болота, шельфы, лиманы, лагуны, солончаки, коралловые рифы.

    Места на побережье, где морская вода смешивается с пресной (устья рек), называются эстуариями. Видовое разнообразие здесь достигается максимума.

    Все морские экосистемы весьма устойчивы, способны сопротивляться вмешательству человека и быстро восстанавливаются после антропогенного влияния.

    Искусственные водные экосистемы

    Все искусственные водные экосистемы созданы человеком для удовлетворения собственных нужд. Это разнообразные пруды, каналы, заводи, водохранилища. К более мелким относят океанариумы, аквариумы.

    Для искусственных водных экосистем характерны следующие черты:

    • Малое количество видов растений и животных
    • Сильная зависимость от деятельности человека
    • Неустойчивость экосистемы, так как ее жизнеспособность зависит от влияния человека.